Skip to content

Latest commit

 

History

History
1269 lines (912 loc) · 78.5 KB

CHANGELOG.md

File metadata and controls

1269 lines (912 loc) · 78.5 KB

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

Note: we move fast, but still we preserve 0.1 version (one feature release) back compatibility.


[UnReleased] - 2024-MM-DD

Added

  • Added a new audio metric DNSMOS (#2525)

  • Added MetricInputTransformer wrapper (#2392)

  • Added input_format argument to segmentation metrics (#2572)

  • Added multi-output support for MAE metric (#2605)

  • Added new metric ProcrustesDistance to new domain Shape (#2723

  • Added truncation argument to BERTScore (#2776)

  • Added HausdorffDistance to segmentation package (#2122)

Changed

  • Tracker higher is better integration (#2649)

  • Updated InfoLM class to dynamically set higher_is_better (#2674)

Deprecated

  • Deprecated num_outputs in R2Score (#2705)

Removed

Fixed

[1.4.3] - 2024-10-10

Fixed

  • Fixed for Pearson changes inputs (#2765)
  • Fixed bug in PESQ metric where NoUtterancesError prevented calculating on a batch of data (#2753)
  • Fixed corner case in MatthewsCorrCoef (#2743)

[1.4.2] - 2022-09-12

Added

  • Re-adding Chrf implementation (#2701)

Fixed

  • Fixed wrong aggregation in segmentation.MeanIoU (#2698)
  • Fixed handling zero division error in binary IoU (Jaccard index) calculation (#2726)
  • Corrected the padding related calculation errors in SSIM (#2721)
  • Fixed compatibility of audio domain with new scipy (#2733)
  • Fixed how prefix/postfix works in MultitaskWrapper (#2722)
  • Fixed flakiness in tests related to torch.unique with dim=None (#2650)

[1.4.1] - 2024-08-02

Changed

  • Calculate text color of ConfusionMatrix plot based on luminance (#2590)
  • Updated _safe_divide to allow Accuracy to run on the GPU (#2640)
  • Improved error messages for intersection detection metrics for wrong user input (#2577)

Removed

  • Dropped Chrf implementation due to licensing issues with the upstream package (#2668)

Fixed

  • Fixed bug in MetricCollection when using compute groups and compute is called more than once (#2571)
  • Fixed class order of panoptic_quality(..., return_per_class=True) output (#2548)
  • Fixed BootstrapWrapper not being reset correctly (#2574)
  • Fixed integration between ClasswiseWrapper and MetricCollection with custom _filter_kwargs method (#2575)
  • Fixed BertScore calculation: pred target misalignment (#2347)
  • Fixed _cumsum helper function in multi-gpu (#2636)
  • Fixed bug in MeanAveragePrecision.coco_to_tm (#2588)
  • Fixed missed f-strings in exceptions/warnings (#2667)

[1.4.0] - 2024-05-03

Added

  • Added SensitivityAtSpecificity metric to classification subpackage (#2217)
  • Added QualityWithNoReference metric to image subpackage (#2288)
  • Added a new segmentation metric:
  • Added support for calculating segmentation quality and recognition quality in PanopticQuality metric (#2381)
  • Added pretty-errors for improving error prints (#2431)
  • Added support for torch.float weighted networks for FID and KID calculations (#2483)
  • Added zero_division argument to selected classification metrics (#2198)

Changed

  • Made __getattr__ and __setattr__ of ClasswiseWrapper more general (#2424)

Fixed

  • Fix getitem for metric collection when prefix/postfix is set (#2430)
  • Fixed axis names with Precision-Recall curve (#2462)
  • Fixed list synchronization with partly empty lists (#2468)
  • Fixed memory leak in metrics using list states (#2492)
  • Fixed bug in computation of ERGAS metric (#2498)
  • Fixed BootStrapper wrapper not working with kwargs provided argument (#2503)
  • Fixed warnings being suppressed in MeanAveragePrecision when requested (#2501)
  • Fixed corner-case in binary_average_precision when only negative samples are provided (#2507)

[1.3.2] - 2024-03-18

Fixed

  • Fixed negative variance estimates in certain image metrics (#2378)
  • Fixed dtype being changed by deepspeed for certain regression metrics (#2379)
  • Fixed plotting of metric collection when prefix/postfix is set (#2429)
  • Fixed bug when top_k>1 and average="macro" for classification metrics (#2423)
  • Fixed case where label prediction tensors in classification metrics were not validated correctly (#2427)
  • Fixed how auc scores are calculated in PrecisionRecallCurve.plot methods (#2437)

[1.3.1] - 2024-02-12

Fixed

  • Fixed how backprop is handled in LPIPS metric (#2326)
  • Fixed MultitaskWrapper not being able to be logged in lightning when using metric collections (#2349)
  • Fixed high memory consumption in Perplexity metric (#2346)
  • Fixed cached network in FeatureShare not being moved to the correct device (#2348)
  • Fix naming of statistics in MeanAveragePrecision with custom max det thresholds (#2367)
  • Fixed custom aggregation in retrieval metrics (#2364)
  • Fixed initialize aggregation metrics with default floating type (#2366)
  • Fixed plotting of confusion matrices (#2358)

[1.3.0] - 2024-01-10

Added

  • Added more tokenizers for SacreBLEU metric (#2068)
  • Added support for logging MultiTaskWrapper directly with lightnings log_dict method (#2213)
  • Added FeatureShare wrapper to share submodules containing feature extractors between metrics (#2120)
  • Added new metrics to image domain:
    • SpatialDistortionIndex (#2260)
    • Added CriticalSuccessIndex (#2257)
    • Spatial Correlation Coefficient (#2248)
  • Added average argument to multiclass versions of PrecisionRecallCurve and ROC (#2084)
  • Added confidence scores when extended_summary=True in MeanAveragePrecision (#2212)
  • Added RetrievalAUROC metric (#2251)
  • Added aggregate argument to retrieval metrics (#2220)
  • Added utility functions in segmentation.utils for future segmentation metrics (#2105)

Changed

  • Changed minimum supported Pytorch version from 1.8 to 1.10 (#2145)
  • Changed x-/y-axis order for PrecisionRecallCurve to be consistent with scikit-learn (#2183)

Deprecated

  • Deprecated metric._update_called (#2141)
  • Deprecated specicity_at_sensitivity in favour of specificity_at_sensitivity (#2199)

Fixed

  • Fixed support for half precision + CPU in metrics requiring topk operator (#2252)
  • Fixed warning incorrectly being raised in Running metrics (#2256)
  • Fixed integration with custom feature extractor in FID metric (#2277)

[1.2.1] - 2023-11-30

Added

  • Added error if NoTrainInceptionV3 is being initialized without torch-fidelity not being installed (#2143)
  • Added support for Pytorch v2.1 (#2142)

Changed

  • Change default state of SpectralAngleMapper and UniversalImageQualityIndex to be tensors (#2089)
  • Use torch range func and repeat for deterministic bincount (#2184)

Removed

  • Removed unused lpips third-party package as dependency of LearnedPerceptualImagePatchSimilarity metric (#2230)

Fixed

  • Fixed numerical stability bug in LearnedPerceptualImagePatchSimilarity metric (#2144)
  • Fixed numerical stability issue in UniversalImageQualityIndex metric (#2222)
  • Fixed incompatibility for MeanAveragePrecision with pycocotools backend when too little max_detection_thresholds are provided (#2219)
  • Fixed support for half precision in Perplexity metric (#2235)
  • Fixed device and dtype for LearnedPerceptualImagePatchSimilarity functional metric (#2234)
  • Fixed bug in Metric._reduce_states(...) when using dist_sync_fn="cat" (#2226)
  • Fixed bug in CosineSimilarity where 2d is expected but 1d input was given (#2241)
  • Fixed bug in MetricCollection when using compute groups and compute is called more than once (#2211)

[1.2.0] - 2023-09-22

Added

  • Added metric to cluster package:
    • MutualInformationScore (#2008)
    • RandScore (#2025)
    • NormalizedMutualInfoScore (#2029)
    • AdjustedRandScore (#2032)
    • CalinskiHarabaszScore (#2036)
    • DunnIndex (#2049)
    • HomogeneityScore (#2053)
    • CompletenessScore (#2053)
    • VMeasureScore (#2053)
    • FowlkesMallowsIndex (#2066)
    • AdjustedMutualInfoScore (#2058)
    • DaviesBouldinScore (#2071)
  • Added backend argument to MeanAveragePrecision (#2034)

[1.1.2] - 2023-09-11

Fixed

  • Fixed tie breaking in ndcg metric (#2031)
  • Fixed bug in BootStrapper when very few samples were evaluated that could lead to crash (#2052)
  • Fixed bug when creating multiple plots that lead to not all plots being shown (#2060)
  • Fixed performance issues in RecallAtFixedPrecision for large batch sizes (#2042)
  • Fixed bug related to MetricCollection used with custom metrics have prefix/postfix attributes (#2070)

[1.1.1] - 2023-08-29

Added

  • Added average argument to MeanAveragePrecision (#2018)

Fixed

  • Fixed bug in PearsonCorrCoef is updated on single samples at a time (#2019)
  • Fixed support for pixel-wise MSE (#2017)
  • Fixed bug in MetricCollection when used with multiple metrics that return dicts with same keys (#2027)
  • Fixed bug in detection intersection metrics when class_metrics=True resulting in wrong values (#1924)
  • Fixed missing attributes higher_is_better, is_differentiable for some metrics (#2028)

[1.1.0] - 2023-08-22

Added

  • Added source aggregated signal-to-distortion ratio (SA-SDR) metric (#1882
  • Added VisualInformationFidelity to image package (#1830)
  • Added EditDistance to text package (#1906)
  • Added top_k argument to RetrievalMRR in retrieval package (#1961)
  • Added support for evaluating "segm" and "bbox" detection in MeanAveragePrecision at the same time (#1928)
  • Added PerceptualPathLength to image package (#1939)
  • Added support for multioutput evaluation in MeanSquaredError (#1937)
  • Added argument extended_summary to MeanAveragePrecision such that precision, recall, iou can be easily returned (#1983)
  • Added warning to ClipScore if long captions are detected and truncate (#2001)
  • Added CLIPImageQualityAssessment to multimodal package (#1931)
  • Added new property metric_state to all metrics for users to investigate currently stored tensors in memory (#2006)

[1.0.3] - 2023-08-08

Added

  • Added warning to MeanAveragePrecision if too many detections are observed (#1978)

Fixed

  • Fix support for int input for when multidim_average="samplewise" in classification metrics (#1977)
  • Fixed x/y labels when plotting confusion matrices (#1976)
  • Fixed IOU compute in cuda (#1982)

[1.0.2] - 2023-08-02

Added

  • Added warning to PearsonCorrCoeff if input has a very small variance for its given dtype (#1926)

Changed

  • Changed all non-task specific classification metrics to be true subtypes of Metric (#1963)

Fixed

  • Fixed bug in CalibrationError where calculations for double precision input was performed in float precision (#1919)
  • Fixed bug related to the prefix/postfix arguments in MetricCollection and ClasswiseWrapper being duplicated (#1918)
  • Fixed missing AUC score when plotting classification metrics that support the score argument (#1948)

[1.0.1] - 2023-07-13

Fixed

  • Fixes corner case when using MetricCollection together with aggregation metrics (#1896)
  • Fixed the use of max_fpr in AUROC metric when only one class is present (#1895)
  • Fixed bug related to empty predictions for IntersectionOverUnion metric (#1892)
  • Fixed bug related to MeanMetric and broadcasting of weights when Nans are present (#1898)
  • Fixed bug related to expected input format of pycoco in MeanAveragePrecision (#1913)

[1.0.0] - 2023-07-04

Added

  • Added prefix and postfix arguments to ClasswiseWrapper (#1866)
  • Added speech-to-reverberation modulation energy ratio (SRMR) metric (#1792, #1872)
  • Added new global arg compute_with_cache to control caching behaviour after compute method (#1754)
  • Added ComplexScaleInvariantSignalNoiseRatio for audio package (#1785)
  • Added Running wrapper for calculate running statistics (#1752)
  • AddedRelativeAverageSpectralError and RootMeanSquaredErrorUsingSlidingWindow to image package (#816)
  • Added support for SpecificityAtSensitivity Metric (#1432)
  • Added support for plotting of metrics through .plot() method ( #1328, #1481, #1480, #1490, #1581, #1585, #1593, #1600, #1605, #1610, #1609, #1621, #1624, #1623, #1638, #1631, #1650, #1639, #1660, #1682, #1786, )
  • Added support for plotting of audio metrics through .plot() method (#1434)
  • Added classes to output from MAP metric (#1419)
  • Added Binary group fairness metrics to classification package (#1404)
  • Added MinkowskiDistance to regression package (#1362)
  • Added pairwise_minkowski_distance to pairwise package (#1362)
  • Added new detection metric PanopticQuality ( #929, #1527, )
  • Added PSNRB metric (#1421)
  • Added ClassificationTask Enum and use in metrics (#1479)
  • Added ignore_index option to exact_match metric (#1540)
  • Add parameter top_k to RetrievalMAP (#1501)
  • Added support for deterministic evaluation on GPU for metrics that uses torch.cumsum operator (#1499)
  • Added support for plotting of aggregation metrics through .plot() method (#1485)
  • Added support for python 3.11 (#1612)
  • Added support for auto clamping of input for metrics that uses the data_range ([#1606](argument #1606))
  • Added ModifiedPanopticQuality metric to detection package (#1627)
  • Added PrecisionAtFixedRecall metric to classification package (#1683)
  • Added multiple metrics to detection package (#1284)
    • IntersectionOverUnion
    • GeneralizedIntersectionOverUnion
    • CompleteIntersectionOverUnion
    • DistanceIntersectionOverUnion
  • Added MultitaskWrapper to wrapper package (#1762)
  • Added RelativeSquaredError metric to regression package (#1765)
  • Added MemorizationInformedFrechetInceptionDistance metric to image package (#1580)

Changed

  • Changed permutation_invariant_training to allow using a 'permutation-wise' metric function (#1794)
  • Changed update_count and update_called from private to public methods (#1370)
  • Raise exception for invalid kwargs in Metric base class (#1427)
  • Extend EnumStr raising ValueError for invalid value (#1479)
  • Improve speed and memory consumption of binned PrecisionRecallCurve with large number of samples (#1493)
  • Changed __iter__ method from raising NotImplementedError to TypeError by setting to None (#1538)
  • FID metric will now raise an error if too few samples are provided (#1655)
  • Allowed FID with torch.float64 (#1628)
  • Changed LPIPS implementation to no more rely on third-party package (#1575)
  • Changed FID matrix square root calculation from scipy to torch (#1708)
  • Changed calculation in PearsonCorrCoeff to be more robust in certain cases (#1729)
  • Changed MeanAveragePrecision to pycocotools backend (#1832)

Deprecated

Removed

  • Support for python 3.7 (#1640)

Fixed

  • Fixed support in MetricTracker for MultioutputWrapper and nested structures (#1608)
  • Fixed restrictive check in PearsonCorrCoef (#1649)
  • Fixed integration with jsonargparse and LightningCLI (#1651)
  • Fixed corner case in calibration error for zero confidence input (#1648)
  • Fix precision-recall curve based computations for float target (#1642)
  • Fixed missing kwarg squeeze in MultiOutputWrapper (#1675)
  • Fixed padding removal for 3d input in MSSSIM (#1674)
  • Fixed max_det_threshold in MAP detection (#1712)
  • Fixed states being saved in metrics that use register_buffer (#1728)
  • Fixed states not being correctly synced and device transferred in MeanAveragePrecision for iou_type="segm" (#1763)
  • Fixed use of prefix and postfix in nested MetricCollection (#1773)
  • Fixed ax plotting logging in `MetricCollection (#1783)
  • Fixed lookup for punkt sources being downloaded in RougeScore (#1789)
  • Fixed integration with lightning for CompositionalMetric (#1761)
  • Fixed several bugs in SpectralDistortionIndex metric (#1808)
  • Fixed bug for corner cases in MatthewsCorrCoef ( #1812, #1863 )
  • Fixed support for half precision in PearsonCorrCoef (#1819)
  • Fixed number of bugs related to average="macro" in classification metrics (#1821)
  • Fixed off-by-one issue when ignore_index = num_classes + 1 in Multiclass-jaccard (#1860)

[0.11.4] - 2023-03-10

Fixed

  • Fixed evaluation of R2Score with near constant target (#1576)
  • Fixed dtype conversion when metric is submodule (#1583)
  • Fixed bug related to top_k>1 and ignore_index!=None in StatScores based metrics (#1589)
  • Fixed corner case for PearsonCorrCoef when running in ddp mode but only on single device (#1587)
  • Fixed overflow error for specific cases in MAP when big areas are calculated (#1607)

[0.11.3] - 2023-02-28

Fixed

  • Fixed classification metrics for byte input (#1521)
  • Fixed the use of ignore_index in MulticlassJaccardIndex (#1386)

[0.11.2] - 2023-02-21

Fixed

  • Fixed compatibility between XLA in _bincount function (#1471)
  • Fixed type hints in methods belonging to MetricTracker wrapper (#1472)
  • Fixed multilabel in ExactMatch (#1474)

[0.11.1] - 2023-01-30

Fixed

  • Fixed type checking on the maximize parameter at the initialization of MetricTracker (#1428)
  • Fixed mixed precision autocast for SSIM metric (#1454)
  • Fixed checking for nltk.punkt in RougeScore if a machine is not online (#1456)
  • Fixed wrongly reset method in MultioutputWrapper (#1460)
  • Fixed dtype checking in PrecisionRecallCurve for target tensor (#1457)

[0.11.0] - 2022-11-30

Added

  • Added MulticlassExactMatch to classification metrics (#1343)
  • Added TotalVariation to image package (#978)
  • Added CLIPScore to new multimodal package (#1314)
  • Added regression metrics:
    • KendallRankCorrCoef (#1271)
    • LogCoshError (#1316)
  • Added new nominal metrics:
  • Added option to pass distributed_available_fn to metrics to allow checks for custom communication backend for making dist_sync_fn actually useful (#1301)
  • Added normalize argument to Inception, FID, KID metrics (#1246)

Changed

  • Changed minimum Pytorch version to be 1.8 (#1263)
  • Changed interface for all functional and modular classification metrics after refactor (#1252)

Removed

  • Removed deprecated BinnedAveragePrecision, BinnedPrecisionRecallCurve, RecallAtFixedPrecision (#1251)
  • Removed deprecated LabelRankingAveragePrecision, LabelRankingLoss and CoverageError (#1251)
  • Removed deprecated KLDivergence and AUC (#1251)

Fixed

  • Fixed precision bug in pairwise_euclidean_distance (#1352)

[0.10.3] - 2022-11-16

Fixed

  • Fixed bug in Metrictracker.best_metric when return_step=False (#1306)
  • Fixed bug to prevent users from going into an infinite loop if trying to iterate of a single metric (#1320)

[0.10.2] - 2022-10-31

Changed

  • Changed in-place operation to out-of-place operation in pairwise_cosine_similarity (#1288)

Fixed

  • Fixed high memory usage for certain classification metrics when average='micro' (#1286)
  • Fixed precision problems when structural_similarity_index_measure was used with autocast (#1291)
  • Fixed slow performance for confusion matrix based metrics (#1302)
  • Fixed restrictive dtype checking in spearman_corrcoef when used with autocast (#1303)

[0.10.1] - 2022-10-21

Fixed

  • Fixed broken clone method for classification metrics (#1250)
  • Fixed unintentional downloading of nltk.punkt when lsum not in rouge_keys (#1258)
  • Fixed type casting in MAP metric between bool and float32 (#1150)

[0.10.0] - 2022-10-04

Added

  • Added a new NLP metric InfoLM (#915)
  • Added Perplexity metric (#922)
  • Added ConcordanceCorrCoef metric to regression package (#1201)
  • Added argument normalize to LPIPS metric (#1216)
  • Added support for multiprocessing of batches in PESQ metric (#1227)
  • Added support for multioutput in PearsonCorrCoef and SpearmanCorrCoef (#1200)

Changed

Deprecated

  • Deprecated BinnedAveragePrecision, BinnedPrecisionRecallCurve, BinnedRecallAtFixedPrecision (#1163)
    • BinnedAveragePrecision -> use AveragePrecision with thresholds arg
    • BinnedPrecisionRecallCurve -> use AveragePrecisionRecallCurve with thresholds arg
    • BinnedRecallAtFixedPrecision -> use RecallAtFixedPrecision with thresholds arg
  • Renamed and refactored LabelRankingAveragePrecision, LabelRankingLoss and CoverageError (#1167)
    • LabelRankingAveragePrecision -> MultilabelRankingAveragePrecision
    • LabelRankingLoss -> MultilabelRankingLoss
    • CoverageError -> MultilabelCoverageError
  • Deprecated KLDivergence and AUC from classification package (#1189)
    • KLDivergence moved to regression package
    • Instead of AUC use torchmetrics.utils.compute.auc

Fixed

  • Fixed a bug in ssim when return_full_image=True where the score was still reduced (#1204)
  • Fixed MPS support for:
  • Fixed bug in ClasswiseWrapper such that compute gave wrong result (#1225)
  • Fixed synchronization of empty list states (#1219)

[0.9.3] - 2022-08-22

Added

  • Added global option sync_on_compute to disable automatic synchronization when compute is called (#1107)

Fixed

  • Fixed missing reset in ClasswiseWrapper (#1129)
  • Fixed JaccardIndex multi-label compute (#1125)
  • Fix SSIM propagate device if gaussian_kernel is False, add test (#1149)

[0.9.2] - 2022-06-29

Fixed

  • Fixed mAP calculation for areas with 0 predictions (#1080)
  • Fixed bug where avg precision state and auroc state was not merge when using MetricCollections (#1086)
  • Skip box conversion if no boxes are present in MeanAveragePrecision (#1097)
  • Fixed inconsistency in docs and code when setting average="none" in AveragePrecision metric (#1116)

[0.9.1] - 2022-06-08

Added

  • Added specific RuntimeError when metric object is on the wrong device (#1056)
  • Added an option to specify own n-gram weights for BLEUScore and SacreBLEUScore instead of using uniform weights only. (#1075)

Fixed

  • Fixed aggregation metrics when input only contains zero (#1070)
  • Fixed TypeError when providing superclass arguments as kwargs (#1069)
  • Fixed bug related to state reference in metric collection when using compute groups (#1076)

[0.9.0] - 2022-05-30

Added

  • Added RetrievalPrecisionRecallCurve and RetrievalRecallAtFixedPrecision to retrieval package (#951)
  • Added class property full_state_update that determines forward should call update once or twice ( #984, #1033)
  • Added support for nested metric collections (#1003)
  • Added Dice to classification package (#1021)
  • Added support to segmentation type segm as IOU for mean average precision (#822)

Changed

  • Renamed reduction argument to average in Jaccard score and added additional options (#874)

Removed

Fixed

  • Fixed non-empty state dict for a few metrics (#1012)
  • Fixed bug when comparing states while finding compute groups (#1022)
  • Fixed torch.double support in stat score metrics (#1023)
  • Fixed FID calculation for non-equal size real and fake input (#1028)
  • Fixed case where KLDivergence could output Nan (#1030)
  • Fixed deterministic for PyTorch<1.8 (#1035)
  • Fixed default value for mdmc_average in Accuracy (#1036)
  • Fixed missing copy of property when using compute groups in MetricCollection (#1052)

[0.8.2] - 2022-05-06

Fixed

  • Fixed multi device aggregation in PearsonCorrCoef (#998)
  • Fixed MAP metric when using custom list of thresholds (#995)
  • Fixed compatibility between compute groups in MetricCollection and prefix/postfix arg (#1007)
  • Fixed compatibility with future Pytorch 1.12 in safe_matmul (#1011, #1014)

[0.8.1] - 2022-04-27

Changed

  • Reimplemented the signal_distortion_ratio metric, which removed the absolute requirement of fast-bss-eval (#964)

Fixed

  • Fixed "Sort currently does not support bool dtype on CUDA" error in MAP for empty preds (#983)
  • Fixed BinnedPrecisionRecallCurve when thresholds argument is not provided (#968)
  • Fixed CalibrationError to work on logit input (#985)

[0.8.0] - 2022-04-14

Added

  • Added WeightedMeanAbsolutePercentageError to regression package (#948)
  • Added new classification metrics:
    • CoverageError (#787)
    • LabelRankingAveragePrecision and LabelRankingLoss (#787)
  • Added new image metric:
    • SpectralAngleMapper (#885)
    • ErrorRelativeGlobalDimensionlessSynthesis (#894)
    • UniversalImageQualityIndex (#824)
    • SpectralDistortionIndex (#873)
  • Added support for MetricCollection in MetricTracker (#718)
  • Added support for 3D image and uniform kernel in StructuralSimilarityIndexMeasure (#818)
  • Added smart update of MetricCollection (#709)
  • Added ClasswiseWrapper for better logging of classification metrics with multiple output values (#832)
  • Added **kwargs argument for passing additional arguments to base class (#833)
  • Added negative ignore_index for the Accuracy metric (#362)
  • Added adaptive_k for the RetrievalPrecision metric (#910)
  • Added reset_real_features argument image quality assessment metrics (#722)
  • Added new keyword argument compute_on_cpu to all metrics (#867)

Changed

  • Made num_classes in jaccard_index a required argument (#853, #914)
  • Added normalizer, tokenizer to ROUGE metric (#838)
  • Improved shape checking of permutation_invariant_training (#864)
  • Allowed reduction None (#891)
  • MetricTracker.best_metric will now give a warning when computing on metric that do not have a best (#913)

Deprecated

  • Deprecated argument compute_on_step (#792)
  • Deprecated passing in dist_sync_on_step, process_group, dist_sync_fn direct argument (#833)

Removed

  • Removed support for versions of Pytorch-Lightning lower than v1.5 (#788)
  • Removed deprecated functions, and warnings in Text (#773)
    • WER and functional.wer
  • Removed deprecated functions and warnings in Image (#796)
    • SSIM and functional.ssim
    • PSNR and functional.psnr
  • Removed deprecated functions, and warnings in classification and regression (#806)
    • FBeta and functional.fbeta
    • F1 and functional.f1
    • Hinge and functional.hinge
    • IoU and functional.iou
    • MatthewsCorrcoef
    • PearsonCorrcoef
    • SpearmanCorrcoef
  • Removed deprecated functions, and warnings in detection and pairwise (#804)
    • MAP and functional.pairwise.manhatten
  • Removed deprecated functions, and warnings in Audio (#805)
    • PESQ and functional.audio.pesq
    • PIT and functional.audio.pit
    • SDR and functional.audio.sdr and functional.audio.si_sdr
    • SNR and functional.audio.snr and functional.audio.si_snr
    • STOI and functional.audio.stoi
  • Removed unused get_num_classes from torchmetrics.utilities.data (#914)

Fixed

  • Fixed device mismatch for MAP metric in specific cases (#950)
  • Improved testing speed (#820)
  • Fixed compatibility of ClasswiseWrapper with the prefix argument of MetricCollection (#843)
  • Fixed BestScore on GPU (#912)
  • Fixed Lsum computation for ROUGEScore (#944)

[0.7.3] - 2022-03-23

Fixed

  • Fixed unsafe log operation in TweedieDeviace for power=1 (#847)
  • Fixed bug in MAP metric related to either no ground truth or no predictions (#884)
  • Fixed ConfusionMatrix, AUROC and AveragePrecision on GPU when running in deterministic mode (#900)
  • Fixed NaN or Inf results returned by signal_distortion_ratio (#899)
  • Fixed memory leak when using update method with tensor where requires_grad=True (#902)

[0.7.2] - 2022-02-10

Fixed

  • Minor patches in JOSS paper.

[0.7.1] - 2022-02-03

Changed

  • Used torch.bucketize in calibration error when torch>1.8 for faster computations (#769)
  • Improve mAP performance (#742)

Fixed

  • Fixed check for available modules (#772)
  • Fixed Matthews correlation coefficient when the denominator is 0 (#781)

[0.7.0] - 2022-01-17

Added

  • Added NLP metrics:
    • MatchErrorRate (#619)
    • WordInfoLost and WordInfoPreserved (#630)
    • SQuAD (#623)
    • CHRFScore (#641)
    • TranslationEditRate (#646)
    • ExtendedEditDistance (#668)
  • Added MultiScaleSSIM into image metrics (#679)
  • Added Signal to Distortion Ratio (SDR) to audio package (#565)
  • Added MinMaxMetric to wrappers (#556)
  • Added ignore_index to retrieval metrics (#676)
  • Added support for multi references in ROUGEScore (#680)
  • Added a default VSCode devcontainer configuration (#621)

Changed

  • Scalar metrics will now consistently have additional dimensions squeezed (#622)
  • Metrics having third party dependencies removed from global import (#463)
  • Untokenized for BLEUScore input stay consistent with all the other text metrics (#640)
  • Arguments reordered for TER, BLEUScore, SacreBLEUScore, CHRFScore now expect input order as predictions first and target second (#696)
  • Changed dtype of metric state from torch.float to torch.long in ConfusionMatrix to accommodate larger values (#715)
  • Unify preds, target input argument's naming across all text metrics (#723, #727)
    • bert, bleu, chrf, sacre_bleu, wip, wil, cer, ter, wer, mer, rouge, squad

Deprecated

  • Renamed IoU -> Jaccard Index (#662)
  • Renamed text WER metric (#714)
    • functional.wer -> functional.word_error_rate
    • WER -> WordErrorRate
  • Renamed correlation coefficient classes: (#710)
    • MatthewsCorrcoef -> MatthewsCorrCoef
    • PearsonCorrcoef -> PearsonCorrCoef
    • SpearmanCorrcoef -> SpearmanCorrCoef
  • Renamed audio STOI metric: (#753, #758)
    • audio.STOI to audio.ShortTimeObjectiveIntelligibility
    • functional.audio.stoi to functional.audio.short_time_objective_intelligibility
  • Renamed audio PESQ metrics: (#751)
    • functional.audio.pesq -> functional.audio.perceptual_evaluation_speech_quality
    • audio.PESQ -> audio.PerceptualEvaluationSpeechQuality
  • Renamed audio SDR metrics: (#711)
    • functional.sdr -> functional.signal_distortion_ratio
    • functional.si_sdr -> functional.scale_invariant_signal_distortion_ratio
    • SDR -> SignalDistortionRatio
    • SI_SDR -> ScaleInvariantSignalDistortionRatio
  • Renamed audio SNR metrics: (#712)
    • functional.snr -> functional.signal_distortion_ratio
    • functional.si_snr -> functional.scale_invariant_signal_noise_ratio
    • SNR -> SignalNoiseRatio
    • SI_SNR -> ScaleInvariantSignalNoiseRatio
  • Renamed F-score metrics: (#731, #740)
    • functional.f1 -> functional.f1_score
    • F1 -> F1Score
    • functional.fbeta -> functional.fbeta_score
    • FBeta -> FBetaScore
  • Renamed Hinge metric: (#734)
    • functional.hinge -> functional.hinge_loss
    • Hinge -> HingeLoss
  • Renamed image PSNR metrics (#732)
    • functional.psnr -> functional.peak_signal_noise_ratio
    • PSNR -> PeakSignalNoiseRatio
  • Renamed image PIT metric: (#737)
    • functional.pit -> functional.permutation_invariant_training
    • PIT -> PermutationInvariantTraining
  • Renamed image SSIM metric: (#747)
    • functional.ssim -> functional.scale_invariant_signal_noise_ratio
    • SSIM -> StructuralSimilarityIndexMeasure
  • Renamed detection MAP to MeanAveragePrecision metric (#754)
  • Renamed Fidelity & LPIPS image metric: (#752)
    • image.FID -> image.FrechetInceptionDistance
    • image.KID -> image.KernelInceptionDistance
    • image.LPIPS -> image.LearnedPerceptualImagePatchSimilarity

Removed

  • Removed embedding_similarity metric (#638)
  • Removed argument concatenate_texts from wer metric (#638)
  • Removed arguments newline_sep and decimal_places from rouge metric (#638)

Fixed

  • Fixed MetricCollection kwargs filtering when no kwargs are present in update signature (#707)

[0.6.2] - 2021-12-15

Fixed

  • Fixed torch.sort currently does not support bool dtype on CUDA (#665)
  • Fixed mAP properly checks if ground truths are empty (#684)
  • Fixed initialization of tensors to be on correct device for MAP metric (#673)

[0.6.1] - 2021-12-06

Changed

  • Migrate MAP metrics from pycocotools to PyTorch (#632)
  • Use torch.topk instead of torch.argsort in retrieval precision for speedup (#627)

Fixed

  • Fix empty predictions in MAP metric (#594, #610, #624)
  • Fix edge case of AUROC with average=weighted on GPU (#606)
  • Fixed forward in compositional metrics (#645)

[0.6.0] - 2021-10-28

Added

  • Added audio metrics:
    • Perceptual Evaluation of Speech Quality (PESQ) (#353)
    • Short-Time Objective Intelligibility (STOI) (#353)
  • Added Information retrieval metrics:
    • RetrievalRPrecision (#577)
    • RetrievalHitRate (#576)
  • Added NLP metrics:
    • SacreBLEUScore (#546)
    • CharErrorRate (#575)
  • Added other metrics:
    • Tweedie Deviance Score (#499)
    • Learned Perceptual Image Patch Similarity (LPIPS) (#431)
  • Added MAP (mean average precision) metric to new detection package (#467)
  • Added support for float targets in nDCG metric (#437)
  • Added average argument to AveragePrecision metric for reducing multi-label and multi-class problems (#477)
  • Added MultioutputWrapper (#510)
  • Added metric sweeping:
    • higher_is_better as constant attribute (#544)
    • higher_is_better to rest of codebase (#584)
  • Added simple aggregation metrics: SumMetric, MeanMetric, CatMetric, MinMetric, MaxMetric (#506)
  • Added pairwise submodule with metrics (#553)
    • pairwise_cosine_similarity
    • pairwise_euclidean_distance
    • pairwise_linear_similarity
    • pairwise_manhatten_distance

Changed

  • AveragePrecision will now as default output the macro average for multilabel and multiclass problems (#477)
  • half, double, float will no longer change the dtype of the metric states. Use metric.set_dtype instead (#493)
  • Renamed AverageMeter to MeanMetric (#506)
  • Changed is_differentiable from property to a constant attribute (#551)
  • ROC and AUROC will no longer throw an error when either the positive or negative class is missing. Instead return 0 score and give a warning

Deprecated

  • Deprecated functional.self_supervised.embedding_similarity in favour of new pairwise submodule

Removed

  • Removed dtype property (#493)

Fixed

  • Fixed bug in F1 with average='macro' and ignore_index!=None (#495)
  • Fixed bug in pit by using the returned first result to initialize device and type (#533)
  • Fixed SSIM metric using too much memory (#539)
  • Fixed bug where device property was not properly update when metric was a child of a module (#542)

[0.5.1] - 2021-08-30

Added

  • Added device and dtype properties (#462)
  • Added TextTester class for robustly testing text metrics (#450)

Changed

  • Added support for float targets in nDCG metric (#437)

Removed

  • Removed rouge-score as dependency for text package (#443)
  • Removed jiwer as dependency for text package (#446)
  • Removed bert-score as dependency for text package (#473)

Fixed

  • Fixed ranking of samples in SpearmanCorrCoef metric (#448)
  • Fixed bug where compositional metrics where unable to sync because of type mismatch (#454)
  • Fixed metric hashing (#478)
  • Fixed BootStrapper metrics not working on GPU (#462)
  • Fixed the semantic ordering of kernel height and width in SSIM metric (#474)

[0.5.0] - 2021-08-09

Added

  • Added Text-related (NLP) metrics:
  • Added MetricTracker wrapper metric for keeping track of the same metric over multiple epochs (#238)
  • Added other metrics:
    • Symmetric Mean Absolute Percentage error (SMAPE) (#375)
    • Calibration error (#394)
    • Permutation Invariant Training (PIT) (#384)
  • Added support in nDCG metric for target with values larger than 1 (#349)
  • Added support for negative targets in nDCG metric (#378)
  • Added None as reduction option in CosineSimilarity metric (#400)
  • Allowed passing labels in (n_samples, n_classes) to AveragePrecision (#386)

Changed

  • Moved psnr and ssim from functional.regression.* to functional.image.* (#382)
  • Moved image_gradient from functional.image_gradients to functional.image.gradients (#381)
  • Moved R2Score from regression.r2score to regression.r2 (#371)
  • Pearson metric now only store 6 statistics instead of all predictions and targets (#380)
  • Use torch.argmax instead of torch.topk when k=1 for better performance (#419)
  • Moved check for number of samples in R2 score to support single sample updating (#426)

Deprecated

  • Rename r2score >> r2_score and kldivergence >> kl_divergence in functional (#371)
  • Moved bleu_score from functional.nlp to functional.text.bleu (#360)

Removed

  • Removed restriction that threshold has to be in (0,1) range to support logit input ( #351 #401)
  • Removed restriction that preds could not be bigger than num_classes to support logit input (#357)
  • Removed module regression.psnr and regression.ssim (#382):
  • Removed (#379):
    • function functional.mean_relative_error
    • num_thresholds argument in BinnedPrecisionRecallCurve

Fixed

  • Fixed bug where classification metrics with average='macro' would lead to wrong result if a class was missing (#303)
  • Fixed weighted, multi-class AUROC computation to allow for 0 observations of some class, as contribution to final AUROC is 0 (#376)
  • Fixed that _forward_cache and _computed attributes are also moved to the correct device if metric is moved (#413)
  • Fixed calculation in IoU metric when using ignore_index argument (#328)

[0.4.1] - 2021-07-05

Changed

Fixed

  • Fixed DDP by is_sync logic to Metric (#339)

[0.4.0] - 2021-06-29

Added

  • Added Image-related metrics:
    • Fréchet inception distance (FID) (#213)
    • Kernel Inception Distance (KID) (#301)
    • Inception Score (#299)
    • KL divergence (#247)
  • Added Audio metrics: SNR, SI_SDR, SI_SNR (#292)
  • Added other metrics:
    • Cosine Similarity (#305)
    • Specificity (#210)
    • Mean Absolute Percentage error (MAPE) (#248)
  • Added add_metrics method to MetricCollection for adding additional metrics after initialization (#221)
  • Added pre-gather reduction in the case of dist_reduce_fx="cat" to reduce communication cost (#217)
  • Added better error message for AUROC when num_classes is not provided for multiclass input (#244)
  • Added support for unnormalized scores (e.g. logits) in Accuracy, Precision, Recall, FBeta, F1, StatScore, Hamming, ConfusionMatrix metrics (#200)
  • Added squared argument to MeanSquaredError for computing RMSE (#249)
  • Added is_differentiable property to ConfusionMatrix, F1, FBeta, Hamming, Hinge, IOU, MatthewsCorrcoef, Precision, Recall, PrecisionRecallCurve, ROC, StatScores (#253)
  • Added sync and sync_context methods for manually controlling when metric states are synced (#302)

Changed

  • Forward cache is reset when reset method is called (#260)
  • Improved per-class metric handling for imbalanced datasets for precision, recall, precision_recall, fbeta, f1, accuracy, and specificity (#204)
  • Decorated torch.jit.unused to MetricCollection forward (#307)
  • Renamed thresholds argument to binned metrics for manually controlling the thresholds (#322)
  • Extend typing (#324, #326, #327)

Deprecated

  • Deprecated functional.mean_relative_error, use functional.mean_absolute_percentage_error (#248)
  • Deprecated num_thresholds argument in BinnedPrecisionRecallCurve (#322)

Removed

  • Removed argument is_multiclass (#319)

Fixed

  • AUC can also support more dimensional inputs when all but one dimension are of size 1 (#242)
  • Fixed dtype of modular metrics after reset has been called (#243)
  • Fixed calculation in matthews_corrcoef to correctly match formula (#321)

[0.3.2] - 2021-05-10

Added

  • Added is_differentiable property:
    • To AUC, AUROC, CohenKappa and AveragePrecision (#178)
    • To PearsonCorrCoef, SpearmanCorrcoef, R2Score and ExplainedVariance (#225)

Changed

  • MetricCollection should return metrics with prefix on items(), keys() (#209)
  • Calling compute before update will now give warning (#164)

Removed

  • Removed numpy as direct dependency (#212)

Fixed

  • Fixed auc calculation and add tests (#197)
  • Fixed loading persisted metric states using load_state_dict() (#202)
  • Fixed PSNR not working with DDP (#214)
  • Fixed metric calculation with unequal batch sizes (#220)
  • Fixed metric concatenation for list states for zero-dim input (#229)
  • Fixed numerical instability in AUROC metric for large input (#230)

[0.3.1] - 2021-04-21

  • Cleaning remaining inconsistency and fix PL develop integration ( #191, #192, #193, #194 )

[0.3.0] - 2021-04-20

Added

  • Added BootStrapper to easily calculate confidence intervals for metrics (#101)
  • Added Binned metrics (#128)
  • Added metrics for Information Retrieval ((PL^5032)):
    • RetrievalMAP (PL^5032)
    • RetrievalMRR (#119)
    • RetrievalPrecision (#139)
    • RetrievalRecall (#146)
    • RetrievalNormalizedDCG (#160)
    • RetrievalFallOut (#161)
  • Added other metrics:
    • CohenKappa (#69)
    • MatthewsCorrcoef (#98)
    • PearsonCorrcoef (#157)
    • SpearmanCorrcoef (#158)
    • Hinge (#120)
  • Added average='micro' as an option in AUROC for multilabel problems (#110)
  • Added multilabel support to ROC metric (#114)
  • Added testing for half precision (#77, #135 )
  • Added AverageMeter for ad-hoc averages of values (#138)
  • Added prefix argument to MetricCollection (#70)
  • Added __getitem__ as metric arithmetic operation (#142)
  • Added property is_differentiable to metrics and test for differentiability (#154)
  • Added support for average, ignore_index and mdmc_average in Accuracy metric (#166)
  • Added postfix arg to MetricCollection (#188)

Changed

  • Changed ExplainedVariance from storing all preds/targets to tracking 5 statistics (#68)
  • Changed behaviour of confusionmatrix for multilabel data to better match multilabel_confusion_matrix from sklearn (#134)
  • Updated FBeta arguments (#111)
  • Changed reset method to use detach.clone() instead of deepcopy when resetting to default (#163)
  • Metrics passed as dict to MetricCollection will now always be in deterministic order (#173)
  • Allowed MetricCollection pass metrics as arguments (#176)

Deprecated

  • Rename argument is_multiclass -> multiclass (#162)

Removed

  • Prune remaining deprecated (#92)

Fixed

  • Fixed when _stable_1d_sort to work when n>=N (PL^6177)
  • Fixed _computed attribute not being correctly reset (#147)
  • Fixed to Blau score (#165)
  • Fixed backwards compatibility for logging with older version of pytorch-lightning (#182)

[0.2.0] - 2021-03-12

Changed

  • Decoupled PL dependency (#13)
  • Refactored functional - mimic the module-like structure: classification, regression, etc. (#16)
  • Refactored utilities - split to topics/submodules (#14)
  • Refactored MetricCollection (#19)

Removed

  • Removed deprecated metrics from PL base (#12, #15)

[0.1.0] - 2021-02-22

  • Added Accuracy metric now generalizes to Top-k accuracy for (multi-dimensional) multi-class inputs using the top_k parameter (PL^4838)
  • Added Accuracy metric now enables the computation of subset accuracy for multi-label or multi-dimensional multi-class inputs with the subset_accuracy parameter (PL^4838)
  • Added HammingDistance metric to compute the hamming distance (loss) (PL^4838)
  • Added StatScores metric to compute the number of true positives, false positives, true negatives and false negatives (PL^4839)
  • Added R2Score metric (PL^5241)
  • Added MetricCollection (PL^4318)
  • Added .clone() method to metrics (PL^4318)
  • Added IoU class interface (PL^4704)
  • The Recall and Precision metrics (and their functional counterparts recall and precision) can now be generalized to Recall@K and Precision@K with the use of top_k parameter (PL^4842)
  • Added compositional metrics (PL^5464)
  • Added AUC/AUROC class interface (PL^5479)
  • Added QuantizationAwareTraining callback (PL^5706)
  • Added ConfusionMatrix class interface (PL^4348)
  • Added multiclass AUROC metric (PL^4236)
  • Added PrecisionRecallCurve, ROC, AveragePrecision class metric (PL^4549)
  • Classification metrics overhaul (PL^4837)
  • Added F1 class metric (PL^4656)
  • Added metrics aggregation in Horovod and fixed early stopping (PL^3775)
  • Added persistent(mode) method to metrics, to enable and disable metric states being added to state_dict (PL^4482)
  • Added unification of regression metrics (PL^4166)
  • Added persistent flag to Metric.add_state (PL^4195)
  • Added classification metrics (PL^4043)
  • Added new Metrics API. (PL^3868, PL^3921)
  • Added EMB similarity (PL^3349)
  • Added SSIM metrics (PL^2671)
  • Added BLEU metrics (PL^2535)