Skip to content

Comments

[BREAKING][worker, rollout, vllm] feat: implement vLLM colocated training-inference rollout with process separation#4280

Merged
wuxibin89 merged 64 commits intoverl-project:mainfrom
jianjunzhong:refactor/vllm_sep_proc
Jan 23, 2026
Merged

[BREAKING][worker, rollout, vllm] feat: implement vLLM colocated training-inference rollout with process separation#4280
wuxibin89 merged 64 commits intoverl-project:mainfrom
jianjunzhong:refactor/vllm_sep_proc

Conversation

@jianjunzhong
Copy link
Contributor

@jianjunzhong jianjunzhong commented Nov 25, 2025

What does this PR do?

Refactor vLLM co-located training-inference rollout from single-process to multi-process architecture. This refactoring separates training and inference into different processes, enabling better resource isolation and paving the way for future checkpoint-engine integration (in roadmap #3624).

Key Changes:

  • Transform vLLMAsyncRollout into ServerAdapter - a client-side adapter that communicates with the inference executor
  • Remove ExternalZeroMQDistributedExecutor and use MultiprocExecutor as the inference backend
  • Implement CUDA IPC-based weight updates via ZeroMQ for efficient parameter synchronization between training and inference processes

Checklist Before Starting

  • Search for similar PRs. Paste at least one query link here: ...
  • Format the PR title as [{modules}] {type}: {description} (This will be checked by the CI)
    • {modules} include fsdp, megatron, sglang, vllm, rollout, trainer, ci, training_utils, recipe, hardware, deployment, ray, worker, single_controller, misc, perf, model, algo, env, tool, ckpt, doc, data
    • If this PR involves multiple modules, separate them with , like [megatron, fsdp, doc]
    • {type} is in feat, fix, refactor, chore, test
    • If this PR breaks any API (CLI arguments, config, function signature, etc.), add [BREAKING] to the beginning of the title.
    • Example: [BREAKING][fsdp, megatron] feat: dynamic batching

Test

For changes that can not be tested by CI (e.g., algorithm implementation, new model support), validate by experiment(s) and show results like training curve plots, evaluation results, etc.

API and Usage Example

This refactoring maintains full backward compatibility with existing vLLM rollout APIs. No changes are required to user code.

Key API Components:

  • ServerAdapter (replaces vLLMAsyncRollout):
    • Acts as client-side adapter for communicating with inference executor
    • Manages CUDA IPC-based weight updates
    • Provides same interface as previous vLLMAsyncRollout class

Design

Architecture Overview

  1. Before (Single-Process Architecture)
  • Single-Process Design

In the original AsyncActorRolloutRefWorker, the training engine and inference engine shared the same process. The vLLM inference engine directly received weight updates through parameter passing.

single

  • Communication Architecture

ExternalZeroMQDistributedExecutor acts as a client, sending instructions to all AsyncActorRolloutRefWorker inference engines via ZMQ to execute operations like init_worker, load_model, init_device, and generate. Operations like wake_up, sleep, and weight updates were executed directly in vLLMAsyncRollout without going through ExternalZeroMQDistributedExecutor.

single_comm

  1. After (Multi-Process Architecture):
  • Multi-Process Design

Transform vLLMAsyncRollout into ServerAdapter, serving as a client for communicating with the inference engine (AsyncLLM). Weight updates are based on CUDA IPC, passing through ZeroMQ to the inference engine.

multi

  • Communication Architecture

Deprecate the original ExternalZeroMQDistributedExecutor class and directly use vllm's MultiprocExecutor by passing distributed_executor_backend = "mp". All inference engine operations are uniformly broadcast to all inference workers through MultiprocExecutor's RPC Broadcast MQ.

multi_comm

Convergence test

  1. GPU
  • model: Qwen3-VL-30B-A3B-Instruct
  • dataset: geo3k
  • GPU: 4*8 H100
image
  1. NPU
  • model: Qwen3-8B
  • dataset: gsm8k
  • NPU: 1*8 910C
  • Ascend HDK: 25.3.RC1.2
  • CANN: 8.3.RC2
  • vLLM-Ascend: 0.13.0rc1
  • training backend: FSDP
    img_v3_02ua_fab92979-57ea-43dc-9481-7f89609caabg

Performance test: update weights

  • CUDA IPC bucket_size: 2GB
  • GPU: H100, ConnectX-7 400 Gbps (InfiniBand)
Model #GPU Parallelism Time
Qwen3-VL-30B-A3B-Instruct TP2,EP8 4*8 5s
DeepSeek-V3.1-Terminus TP8, PP16, EP8 16*8 120s
DeepSeek-V3.1-Terminus TP16,PP16 32*8 80s

Checklist Before Submitting

Important

Please check all the following items before requesting a review, otherwise the reviewer might deprioritize this PR for review.

…ss separation

Signed-off-by: jianjunzhong <jianjunzhong@foxmail.com>
@jianjunzhong jianjunzhong force-pushed the refactor/vllm_sep_proc branch from 51c8ad9 to 714a32f Compare November 27, 2025 14:59
@jianjunzhong jianjunzhong changed the title [BREAKING][worker, rollout, vllm] feat: implement vLLM co-located training-inference rollout with process separation [WIP][BREAKING][worker, rollout, vllm] feat: implement vLLM co-located training-inference rollout with process separation Nov 28, 2025
Signed-off-by: jianjunzhong <jianjunzhong@foxmail.com>
Signed-off-by: jianjunzhong <jianjunzhong@foxmail.com>
Signed-off-by: jianjunzhong <jianjunzhong@foxmail.com>
Signed-off-by: jianjunzhong <jianjunzhong@foxmail.com>
Signed-off-by: jianjunzhong <jianjunzhong@foxmail.com>
Signed-off-by: jianjunzhong <jianjunzhong@foxmail.com>
Signed-off-by: jianjunzhong <jianjunzhong@foxmail.com>
Signed-off-by: jianjunzhong <jianjunzhong@foxmail.com>
Signed-off-by: jianjunzhong <jianjunzhong@foxmail.com>
Signed-off-by: jianjunzhong <jianjunzhong@foxmail.com>
Signed-off-by: jianjunzhong <jianjunzhong@foxmail.com>
Signed-off-by: jianjunzhong <jianjunzhong@foxmail.com>
Signed-off-by: jianjunzhong <jianjunzhong@foxmail.com>
Signed-off-by: jianjunzhong <jianjunzhong@foxmail.com>
Signed-off-by: jianjunzhong <jianjunzhong@foxmail.com>
Signed-off-by: jianjunzhong <jianjunzhong@foxmail.com>
Signed-off-by: jianjunzhong <jianjunzhong@foxmail.com>
Signed-off-by: jianjunzhong <jianjunzhong@foxmail.com>
@jianjunzhong jianjunzhong force-pushed the refactor/vllm_sep_proc branch from ba4512b to ca088a2 Compare December 7, 2025 14:44
Signed-off-by: jianjunzhong <jianjunzhong@foxmail.com>
Signed-off-by: jianjunzhong <jianjunzhong@foxmail.com>
Signed-off-by: jianjunzhong <jianjunzhong@foxmail.com>
lora_path=VLLM_LORA_PATH,
peft_config=asdict(peft_config),
lora_tensors=weights,
# build cuda ipc buffer
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

hi. thank you for the contribution! just one comment: could you abstract the zmq+ipc communication channel out, and add some corresponding unittests please?

@wuxibin89 wuxibin89 merged commit e9405d7 into verl-project:main Jan 23, 2026
1 check passed
sophiayyya pushed a commit to sophiayyya/verl that referenced this pull request Jan 25, 2026
…ning-inference rollout with process separation (verl-project#4280)

### What does this PR do?
Refactor vLLM co-located training-inference rollout from single-process
to multi-process architecture. This refactoring separates training and
inference into different processes, enabling better resource isolation
and paving the way for future checkpoint-engine integration (in roadmap
verl-project#3624).

**Key Changes:**
- Transform `vLLMAsyncRollout` into `ServerAdapter` - a client-side
adapter that communicates with the inference executor
- Remove `ExternalZeroMQDistributedExecutor` and use `MultiprocExecutor`
as the inference backend
- Implement CUDA IPC-based weight updates via ZeroMQ for efficient
parameter synchronization between training and inference processes

### Checklist Before Starting

- [x] Search for similar PRs. Paste at least one query link here: ...
- [x] Format the PR title as `[{modules}] {type}: {description}` (This
will be checked by the CI)
- `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`,
`trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`,
`ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`,
`env`, `tool`, `ckpt`, `doc`, `data`
- If this PR involves multiple modules, separate them with `,` like
`[megatron, fsdp, doc]`
  - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test`
- If this PR breaks any API (CLI arguments, config, function signature,
etc.), add `[BREAKING]` to the beginning of the title.
  - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching`

### Test

> For changes that can not be tested by CI (e.g., algorithm
implementation, new model support), validate by experiment(s) and show
results like training curve plots, evaluation results, etc.

### API and Usage Example

This refactoring maintains full backward compatibility with existing
vLLM rollout APIs. No changes are required to user code.

**Key API Components:**

* **ServerAdapter** (replaces `vLLMAsyncRollout`):
- Acts as client-side adapter for communicating with inference executor
   - Manages CUDA IPC-based weight updates
   - Provides same interface as previous `vLLMAsyncRollout` class

### Design

#### Architecture Overview

1. Before (Single-Process Architecture)

* Single-Process Design

In the original `AsyncActorRolloutRefWorker`, the training engine and
inference engine shared the same process. The vLLM inference engine
directly received weight updates through parameter passing.


![single](https://github.com/user-attachments/assets/c3ff858f-f33e-4eb7-98c5-083c5b679d62)

* Communication Architecture

`ExternalZeroMQDistributedExecutor` acts as a client, sending
instructions to all `AsyncActorRolloutRefWorker` inference engines via
ZMQ to execute operations like `init_worker`, `load_model`,
`init_device`, and `generate`. Operations like `wake_up`, `sleep`, and
weight updates were executed directly in `vLLMAsyncRollout` without
going through `ExternalZeroMQDistributedExecutor`.


![single_comm](https://github.com/user-attachments/assets/2be913c0-9b87-4281-bac2-1460e946b702)

2. After (Multi-Process Architecture):

* Multi-Process Design

Transform `vLLMAsyncRollout` into `ServerAdapter`, serving as a client
for communicating with the inference engine (AsyncLLM). Weight updates
are based on CUDA IPC, passing through ZeroMQ to the inference engine.



![multi](https://github.com/user-attachments/assets/51102b97-f74b-4cda-8a56-5effd2c64539)

* Communication Architecture

Deprecate the original `ExternalZeroMQDistributedExecutor` class and
directly use vllm's `MultiprocExecutor` by passing
`distributed_executor_backend = "mp"`. All inference engine operations
are uniformly broadcast to all inference workers through
`MultiprocExecutor`'s RPC Broadcast MQ.


![multi_comm](https://github.com/user-attachments/assets/4a98cba4-89d0-432e-94dd-040a20877363)

### Convergence test
- model: Qwen3-VL-30B-A3B-Instruct
- dataset: geo3k
- GPU: 4*8 H100
<img width="660" height="618" alt="image"
src="https://github.com/user-attachments/assets/6e3e7dbd-03f9-471a-b8d5-bc0344dba299"
/>


### Performance test: update weights
- CUDA IPC bucket_size: 2GB
- GPU: H100, ConnectX-7 400 Gbps (InfiniBand)

| Model | #GPU | Parallelism | Time |
|---|---|---|---|
|Qwen3-VL-30B-A3B-Instruct|TP2,EP8|4*8|5s|
|DeepSeek-V3.1-Terminus|TP8, PP16, EP8| 16*8 | 120s |
|DeepSeek-V3.1-Terminus|TP16,PP16| 32*8 | 80s| 

### Checklist Before Submitting

> [!IMPORTANT]
> Please check all the following items before requesting a review,
otherwise the reviewer might deprioritize this PR for review.

- [x] Read the [Contribute
Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md).
- [x] Apply [pre-commit
checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting):
`pre-commit install && pre-commit run --all-files --show-diff-on-failure
--color=always`
- [ ] Add / Update [the
documentation](https://github.com/volcengine/verl/tree/main/docs).
- [ ] Add unit or end-to-end test(s) to [the CI
workflow](https://github.com/volcengine/verl/tree/main/.github/workflows)
to cover all the code. If not feasible, explain why: ...
- [ ] Once your PR is ready for CI, send a message in [the `ci-request`
channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the
`verl` Slack
workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
(If not accessible, please try [the Feishu group
(飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).)

---------

Signed-off-by: jianjunzhong <jianjunzhong@foxmail.com>
Co-authored-by: wuxibin <wuxibin@bytedance.com>
meichangsu1 pushed a commit to meichangsu1/verl that referenced this pull request Jan 27, 2026
…ning-inference rollout with process separation (verl-project#4280)

### What does this PR do?
Refactor vLLM co-located training-inference rollout from single-process
to multi-process architecture. This refactoring separates training and
inference into different processes, enabling better resource isolation
and paving the way for future checkpoint-engine integration (in roadmap
verl-project#3624).

**Key Changes:**
- Transform `vLLMAsyncRollout` into `ServerAdapter` - a client-side
adapter that communicates with the inference executor
- Remove `ExternalZeroMQDistributedExecutor` and use `MultiprocExecutor`
as the inference backend
- Implement CUDA IPC-based weight updates via ZeroMQ for efficient
parameter synchronization between training and inference processes

### Checklist Before Starting

- [x] Search for similar PRs. Paste at least one query link here: ...
- [x] Format the PR title as `[{modules}] {type}: {description}` (This
will be checked by the CI)
- `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`,
`trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`,
`ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`,
`env`, `tool`, `ckpt`, `doc`, `data`
- If this PR involves multiple modules, separate them with `,` like
`[megatron, fsdp, doc]`
  - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test`
- If this PR breaks any API (CLI arguments, config, function signature,
etc.), add `[BREAKING]` to the beginning of the title.
  - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching`

### Test

> For changes that can not be tested by CI (e.g., algorithm
implementation, new model support), validate by experiment(s) and show
results like training curve plots, evaluation results, etc.

### API and Usage Example

This refactoring maintains full backward compatibility with existing
vLLM rollout APIs. No changes are required to user code.

**Key API Components:**

* **ServerAdapter** (replaces `vLLMAsyncRollout`):
- Acts as client-side adapter for communicating with inference executor
   - Manages CUDA IPC-based weight updates
   - Provides same interface as previous `vLLMAsyncRollout` class

### Design

#### Architecture Overview

1. Before (Single-Process Architecture)

* Single-Process Design

In the original `AsyncActorRolloutRefWorker`, the training engine and
inference engine shared the same process. The vLLM inference engine
directly received weight updates through parameter passing.


![single](https://github.com/user-attachments/assets/c3ff858f-f33e-4eb7-98c5-083c5b679d62)

* Communication Architecture

`ExternalZeroMQDistributedExecutor` acts as a client, sending
instructions to all `AsyncActorRolloutRefWorker` inference engines via
ZMQ to execute operations like `init_worker`, `load_model`,
`init_device`, and `generate`. Operations like `wake_up`, `sleep`, and
weight updates were executed directly in `vLLMAsyncRollout` without
going through `ExternalZeroMQDistributedExecutor`.


![single_comm](https://github.com/user-attachments/assets/2be913c0-9b87-4281-bac2-1460e946b702)

2. After (Multi-Process Architecture):

* Multi-Process Design

Transform `vLLMAsyncRollout` into `ServerAdapter`, serving as a client
for communicating with the inference engine (AsyncLLM). Weight updates
are based on CUDA IPC, passing through ZeroMQ to the inference engine.



![multi](https://github.com/user-attachments/assets/51102b97-f74b-4cda-8a56-5effd2c64539)

* Communication Architecture

Deprecate the original `ExternalZeroMQDistributedExecutor` class and
directly use vllm's `MultiprocExecutor` by passing
`distributed_executor_backend = "mp"`. All inference engine operations
are uniformly broadcast to all inference workers through
`MultiprocExecutor`'s RPC Broadcast MQ.


![multi_comm](https://github.com/user-attachments/assets/4a98cba4-89d0-432e-94dd-040a20877363)

### Convergence test
- model: Qwen3-VL-30B-A3B-Instruct
- dataset: geo3k
- GPU: 4*8 H100
<img width="660" height="618" alt="image"
src="https://github.com/user-attachments/assets/6e3e7dbd-03f9-471a-b8d5-bc0344dba299"
/>


### Performance test: update weights
- CUDA IPC bucket_size: 2GB
- GPU: H100, ConnectX-7 400 Gbps (InfiniBand)

| Model | #GPU | Parallelism | Time |
|---|---|---|---|
|Qwen3-VL-30B-A3B-Instruct|TP2,EP8|4*8|5s|
|DeepSeek-V3.1-Terminus|TP8, PP16, EP8| 16*8 | 120s |
|DeepSeek-V3.1-Terminus|TP16,PP16| 32*8 | 80s| 

### Checklist Before Submitting

> [!IMPORTANT]
> Please check all the following items before requesting a review,
otherwise the reviewer might deprioritize this PR for review.

- [x] Read the [Contribute
Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md).
- [x] Apply [pre-commit
checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting):
`pre-commit install && pre-commit run --all-files --show-diff-on-failure
--color=always`
- [ ] Add / Update [the
documentation](https://github.com/volcengine/verl/tree/main/docs).
- [ ] Add unit or end-to-end test(s) to [the CI
workflow](https://github.com/volcengine/verl/tree/main/.github/workflows)
to cover all the code. If not feasible, explain why: ...
- [ ] Once your PR is ready for CI, send a message in [the `ci-request`
channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the
`verl` Slack
workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
(If not accessible, please try [the Feishu group
(飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).)

---------

Signed-off-by: jianjunzhong <jianjunzhong@foxmail.com>
Co-authored-by: wuxibin <wuxibin@bytedance.com>
vermouth1992 pushed a commit that referenced this pull request Jan 27, 2026
### What does this PR do?

#4280 refactor vllm breaking
`one-step-off-policy` and `fully-async`. This PR introduce
CheckpointEngineManager to coordinate weight synchronization between
trainer and rollout replicas.

Next PR, refactor `one-step-off-policy` and `fully-async` with
CheckpointEngineManager.

design doc:
https://github.com/volcengine/verl/tree/main/verl/checkpoint_engine
meichangsu1 pushed a commit to meichangsu1/verl that referenced this pull request Jan 27, 2026
…ning-inference rollout with process separation (verl-project#4280)

### What does this PR do?
Refactor vLLM co-located training-inference rollout from single-process
to multi-process architecture. This refactoring separates training and
inference into different processes, enabling better resource isolation
and paving the way for future checkpoint-engine integration (in roadmap
verl-project#3624).

**Key Changes:**
- Transform `vLLMAsyncRollout` into `ServerAdapter` - a client-side
adapter that communicates with the inference executor
- Remove `ExternalZeroMQDistributedExecutor` and use `MultiprocExecutor`
as the inference backend
- Implement CUDA IPC-based weight updates via ZeroMQ for efficient
parameter synchronization between training and inference processes

### Checklist Before Starting

- [x] Search for similar PRs. Paste at least one query link here: ...
- [x] Format the PR title as `[{modules}] {type}: {description}` (This
will be checked by the CI)
- `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`,
`trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`,
`ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`,
`env`, `tool`, `ckpt`, `doc`, `data`
- If this PR involves multiple modules, separate them with `,` like
`[megatron, fsdp, doc]`
  - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test`
- If this PR breaks any API (CLI arguments, config, function signature,
etc.), add `[BREAKING]` to the beginning of the title.
  - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching`

### Test

> For changes that can not be tested by CI (e.g., algorithm
implementation, new model support), validate by experiment(s) and show
results like training curve plots, evaluation results, etc.

### API and Usage Example

This refactoring maintains full backward compatibility with existing
vLLM rollout APIs. No changes are required to user code.

**Key API Components:**

* **ServerAdapter** (replaces `vLLMAsyncRollout`):
- Acts as client-side adapter for communicating with inference executor
   - Manages CUDA IPC-based weight updates
   - Provides same interface as previous `vLLMAsyncRollout` class

### Design

#### Architecture Overview

1. Before (Single-Process Architecture)

* Single-Process Design

In the original `AsyncActorRolloutRefWorker`, the training engine and
inference engine shared the same process. The vLLM inference engine
directly received weight updates through parameter passing.


![single](https://github.com/user-attachments/assets/c3ff858f-f33e-4eb7-98c5-083c5b679d62)

* Communication Architecture

`ExternalZeroMQDistributedExecutor` acts as a client, sending
instructions to all `AsyncActorRolloutRefWorker` inference engines via
ZMQ to execute operations like `init_worker`, `load_model`,
`init_device`, and `generate`. Operations like `wake_up`, `sleep`, and
weight updates were executed directly in `vLLMAsyncRollout` without
going through `ExternalZeroMQDistributedExecutor`.


![single_comm](https://github.com/user-attachments/assets/2be913c0-9b87-4281-bac2-1460e946b702)

2. After (Multi-Process Architecture):

* Multi-Process Design

Transform `vLLMAsyncRollout` into `ServerAdapter`, serving as a client
for communicating with the inference engine (AsyncLLM). Weight updates
are based on CUDA IPC, passing through ZeroMQ to the inference engine.



![multi](https://github.com/user-attachments/assets/51102b97-f74b-4cda-8a56-5effd2c64539)

* Communication Architecture

Deprecate the original `ExternalZeroMQDistributedExecutor` class and
directly use vllm's `MultiprocExecutor` by passing
`distributed_executor_backend = "mp"`. All inference engine operations
are uniformly broadcast to all inference workers through
`MultiprocExecutor`'s RPC Broadcast MQ.


![multi_comm](https://github.com/user-attachments/assets/4a98cba4-89d0-432e-94dd-040a20877363)

### Convergence test
- model: Qwen3-VL-30B-A3B-Instruct
- dataset: geo3k
- GPU: 4*8 H100
<img width="660" height="618" alt="image"
src="https://github.com/user-attachments/assets/6e3e7dbd-03f9-471a-b8d5-bc0344dba299"
/>


### Performance test: update weights
- CUDA IPC bucket_size: 2GB
- GPU: H100, ConnectX-7 400 Gbps (InfiniBand)

| Model | #GPU | Parallelism | Time |
|---|---|---|---|
|Qwen3-VL-30B-A3B-Instruct|TP2,EP8|4*8|5s|
|DeepSeek-V3.1-Terminus|TP8, PP16, EP8| 16*8 | 120s |
|DeepSeek-V3.1-Terminus|TP16,PP16| 32*8 | 80s| 

### Checklist Before Submitting

> [!IMPORTANT]
> Please check all the following items before requesting a review,
otherwise the reviewer might deprioritize this PR for review.

- [x] Read the [Contribute
Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md).
- [x] Apply [pre-commit
checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting):
`pre-commit install && pre-commit run --all-files --show-diff-on-failure
--color=always`
- [ ] Add / Update [the
documentation](https://github.com/volcengine/verl/tree/main/docs).
- [ ] Add unit or end-to-end test(s) to [the CI
workflow](https://github.com/volcengine/verl/tree/main/.github/workflows)
to cover all the code. If not feasible, explain why: ...
- [ ] Once your PR is ready for CI, send a message in [the `ci-request`
channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the
`verl` Slack
workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
(If not accessible, please try [the Feishu group
(飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).)

---------

Signed-off-by: jianjunzhong <jianjunzhong@foxmail.com>
Co-authored-by: wuxibin <wuxibin@bytedance.com>
wuxibin89 pushed a commit that referenced this pull request Jan 30, 2026
…pport checks (#5089)

### What does this PR do?

To address the issue of older NPU drivers not supporting weight updates
via IPC in #4280, this PR adds support for shared memory for weight
updates.

### Checklist Before Starting

- [x] Search for similar PRs. Paste at least one query link here: ...
- [x] Format the PR title as `[{modules}] {type}: {description}` (This
will be checked by the CI)
- `{modules}` include `fsdp`, `megatron`, `veomni`, `sglang`, `vllm`,
`rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`,
`deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`,
`model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data`, `cfg`, `reward`
- If this PR involves multiple modules, separate them with `,` like
`[megatron, fsdp, doc]`
  - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test`
- If this PR breaks any API (CLI arguments, config, function signature,
etc.), add `[BREAKING]` to the beginning of the title.
  - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching`

### Test

> For changes that can not be tested by CI (e.g., algorithm
implementation, new model support), validate by experiment(s) and show
results like training curve plots, evaluation results, etc.

### API and Usage Example

> Demonstrate how the API changes if any, and provide usage example(s)
if possible.

```python
# Add code snippet or script demonstrating how to use this
```

### Design & Code Changes

> Demonstrate the high-level design if this PR is complex, and list the
specific changes.

### Checklist Before Submitting

> [!IMPORTANT]
> Please check all the following items before requesting a review,
otherwise the reviewer might deprioritize this PR for review.

- [x] Read the [Contribute
Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md).
- [x] Apply [pre-commit
checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting):
`pre-commit install && pre-commit run --all-files --show-diff-on-failure
--color=always`
- [ ] Add / Update [the
documentation](https://github.com/volcengine/verl/tree/main/docs).
- [ ] Add unit or end-to-end test(s) to [the CI
workflow](https://github.com/volcengine/verl/tree/main/.github/workflows)
to cover all the code. If not feasible, explain why: ...
- [ ] Once your PR is ready for CI, send a message in [the `ci-request`
channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the
`verl` Slack
workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
(If not accessible, please try [the Feishu group
(飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).)
- [ ] If your PR is related to the `recipe` submodule, please also
update the reference to the submodule commit via `git submodule update
--remote` or `cd recipe && git pull origin main`.

---------

Signed-off-by: jianjunzhong <jianjunzhong@foxmail.com>
RobotGF pushed a commit to RobotGF/verl that referenced this pull request Jan 30, 2026
…pport checks (verl-project#5089)

### What does this PR do?

To address the issue of older NPU drivers not supporting weight updates
via IPC in verl-project#4280, this PR adds support for shared memory for weight
updates.

### Checklist Before Starting

- [x] Search for similar PRs. Paste at least one query link here: ...
- [x] Format the PR title as `[{modules}] {type}: {description}` (This
will be checked by the CI)
- `{modules}` include `fsdp`, `megatron`, `veomni`, `sglang`, `vllm`,
`rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`,
`deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`,
`model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data`, `cfg`, `reward`
- If this PR involves multiple modules, separate them with `,` like
`[megatron, fsdp, doc]`
  - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test`
- If this PR breaks any API (CLI arguments, config, function signature,
etc.), add `[BREAKING]` to the beginning of the title.
  - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching`

### Test

> For changes that can not be tested by CI (e.g., algorithm
implementation, new model support), validate by experiment(s) and show
results like training curve plots, evaluation results, etc.

### API and Usage Example

> Demonstrate how the API changes if any, and provide usage example(s)
if possible.

```python
# Add code snippet or script demonstrating how to use this
```

### Design & Code Changes

> Demonstrate the high-level design if this PR is complex, and list the
specific changes.

### Checklist Before Submitting

> [!IMPORTANT]
> Please check all the following items before requesting a review,
otherwise the reviewer might deprioritize this PR for review.

- [x] Read the [Contribute
Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md).
- [x] Apply [pre-commit
checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting):
`pre-commit install && pre-commit run --all-files --show-diff-on-failure
--color=always`
- [ ] Add / Update [the
documentation](https://github.com/volcengine/verl/tree/main/docs).
- [ ] Add unit or end-to-end test(s) to [the CI
workflow](https://github.com/volcengine/verl/tree/main/.github/workflows)
to cover all the code. If not feasible, explain why: ...
- [ ] Once your PR is ready for CI, send a message in [the `ci-request`
channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the
`verl` Slack
workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
(If not accessible, please try [the Feishu group
(飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).)
- [ ] If your PR is related to the `recipe` submodule, please also
update the reference to the submodule commit via `git submodule update
--remote` or `cd recipe && git pull origin main`.

---------

Signed-off-by: jianjunzhong <jianjunzhong@foxmail.com>
vermouth1992 pushed a commit that referenced this pull request Jan 31, 2026
### What does this PR do?

#4280
Revert the default value of vllm max_num_seqs which may effect the
throughput
### Checklist Before Starting

- [ ] Search for similar PRs. Paste at least one query link here: ...
- [ ] Format the PR title as `[{modules}] {type}: {description}` (This
will be checked by the CI)
- `{modules}` include `fsdp`, `megatron`, `veomni`, `sglang`, `vllm`,
`rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`,
`deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`,
`model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data`, `cfg`, `reward`
- If this PR involves multiple modules, separate them with `,` like
`[megatron, fsdp, doc]`
  - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test`
- If this PR breaks any API (CLI arguments, config, function signature,
etc.), add `[BREAKING]` to the beginning of the title.
  - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching`

### Test

> For changes that can not be tested by CI (e.g., algorithm
implementation, new model support), validate by experiment(s) and show
results like training curve plots, evaluation results, etc.

### API and Usage Example

> Demonstrate how the API changes if any, and provide usage example(s)
if possible.

```python
# Add code snippet or script demonstrating how to use this
```

### Design & Code Changes

> Demonstrate the high-level design if this PR is complex, and list the
specific changes.

### Checklist Before Submitting

> [!IMPORTANT]
> Please check all the following items before requesting a review,
otherwise the reviewer might deprioritize this PR for review.

- [ ] Read the [Contribute
Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md).
- [ ] Apply [pre-commit
checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting):
`pre-commit install && pre-commit run --all-files --show-diff-on-failure
--color=always`
- [ ] Add / Update [the
documentation](https://github.com/volcengine/verl/tree/main/docs).
- [ ] Add unit or end-to-end test(s) to [the CI
workflow](https://github.com/volcengine/verl/tree/main/.github/workflows)
to cover all the code. If not feasible, explain why: ...
- [ ] Once your PR is ready for CI, send a message in [the `ci-request`
channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the
`verl` Slack
workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
(If not accessible, please try [the Feishu group
(飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).)
- [ ] If your PR is related to the `recipe` submodule, please also
update the reference to the submodule commit via `git submodule update
--remote` or `cd recipe && git pull origin main`.
wuxibin89 pushed a commit that referenced this pull request Feb 2, 2026
…caused by multiple PRs (#5100)

### What does this PR do?

> Add **concise** overview of what this PR aims to achieve or
accomplish. Reference related GitHub issues and PRs that help with the
review.

**Problem1: ConfigAttributeError('Missing key config\n full_key:
config\n object_type=dict')**
This error was introduced by this
[PR](#5034): `dataset_config`
type was changed from `DictConfig` to `DictConfigWrap` in
`AgentLoopBase` initialization (using dataset_config.config for
passing), but the fully async agentloop failed to update
`dataset_config` to `DictConfigWrap`, causing the error.

The following two problems were introduced by this
[PR](#4280):

**Problem2: TypeError: got an unexpected keyword argument
'cuda_visible_devices'**
The PR added `cuda_visible_devices` to `vLLMHttpServer`, but its
subclass `vLLMHttpServerForPartial` in fully async was not updated
accordingly, causing conflicts.

**Problem3: KeyError: 'ASCEND_RT_VISIBLE_DEVICES'**
The PR references the environment variable `ASCEND_RT_VISIBLE_DEVICES`
in `get_device_uuid` but does not handle its absence or set a default
value, leading to potential errors.

### Checklist Before Starting

- [x] Search for similar PRs. Paste at least one query link here: ...
- [x] Format the PR title as `[{modules}] {type}: {description}` (This
will be checked by the CI)
- `{modules}` include `fsdp`, `megatron`, `veomni`, `sglang`, `vllm`,
`rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`,
`deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`,
`model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data`, `cfg`, `reward`
- If this PR involves multiple modules, separate them with `,` like
`[megatron, fsdp, doc]`
  - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test`
- If this PR breaks any API (CLI arguments, config, function signature,
etc.), add `[BREAKING]` to the beginning of the title.
  - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching`

### Test

> For changes that can not be tested by CI (e.g., algorithm
implementation, new model support), validate by experiment(s) and show
results like training curve plots, evaluation results, etc.

### API and Usage Example

> Demonstrate how the API changes if any, and provide usage example(s)
if possible.

```python
# Add code snippet or script demonstrating how to use this
```

### Design & Code Changes

> Demonstrate the high-level design if this PR is complex, and list the
specific changes.

### Checklist Before Submitting

> [!IMPORTANT]
> Please check all the following items before requesting a review,
otherwise the reviewer might deprioritize this PR for review.

- [x] Read the [Contribute
Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md).
- [x] Apply [pre-commit
checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting):
`pre-commit install && pre-commit run --all-files --show-diff-on-failure
--color=always`
- [ ] Add / Update [the
documentation](https://github.com/volcengine/verl/tree/main/docs).
- [ ] Add unit or end-to-end test(s) to [the CI
workflow](https://github.com/volcengine/verl/tree/main/.github/workflows)
to cover all the code. If not feasible, explain why: ...
- [ ] Once your PR is ready for CI, send a message in [the `ci-request`
channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the
`verl` Slack
workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
(If not accessible, please try [the Feishu group
(飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).)
- [ ] If your PR is related to the `recipe` submodule, please also
update the reference to the submodule commit via `git submodule update
--remote` or `cd recipe && git pull origin main`.
amzfang pushed a commit to amzfang/verl that referenced this pull request Feb 3, 2026
…caused by multiple PRs (verl-project#5100)

### What does this PR do?

> Add **concise** overview of what this PR aims to achieve or
accomplish. Reference related GitHub issues and PRs that help with the
review.

**Problem1: ConfigAttributeError('Missing key config\n full_key:
config\n object_type=dict')**
This error was introduced by this
[PR](verl-project#5034): `dataset_config`
type was changed from `DictConfig` to `DictConfigWrap` in
`AgentLoopBase` initialization (using dataset_config.config for
passing), but the fully async agentloop failed to update
`dataset_config` to `DictConfigWrap`, causing the error.

The following two problems were introduced by this
[PR](verl-project#4280):

**Problem2: TypeError: got an unexpected keyword argument
'cuda_visible_devices'**
The PR added `cuda_visible_devices` to `vLLMHttpServer`, but its
subclass `vLLMHttpServerForPartial` in fully async was not updated
accordingly, causing conflicts.

**Problem3: KeyError: 'ASCEND_RT_VISIBLE_DEVICES'**
The PR references the environment variable `ASCEND_RT_VISIBLE_DEVICES`
in `get_device_uuid` but does not handle its absence or set a default
value, leading to potential errors.

### Checklist Before Starting

- [x] Search for similar PRs. Paste at least one query link here: ...
- [x] Format the PR title as `[{modules}] {type}: {description}` (This
will be checked by the CI)
- `{modules}` include `fsdp`, `megatron`, `veomni`, `sglang`, `vllm`,
`rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`,
`deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`,
`model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data`, `cfg`, `reward`
- If this PR involves multiple modules, separate them with `,` like
`[megatron, fsdp, doc]`
  - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test`
- If this PR breaks any API (CLI arguments, config, function signature,
etc.), add `[BREAKING]` to the beginning of the title.
  - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching`

### Test

> For changes that can not be tested by CI (e.g., algorithm
implementation, new model support), validate by experiment(s) and show
results like training curve plots, evaluation results, etc.

### API and Usage Example

> Demonstrate how the API changes if any, and provide usage example(s)
if possible.

```python
# Add code snippet or script demonstrating how to use this
```

### Design & Code Changes

> Demonstrate the high-level design if this PR is complex, and list the
specific changes.

### Checklist Before Submitting

> [!IMPORTANT]
> Please check all the following items before requesting a review,
otherwise the reviewer might deprioritize this PR for review.

- [x] Read the [Contribute
Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md).
- [x] Apply [pre-commit
checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting):
`pre-commit install && pre-commit run --all-files --show-diff-on-failure
--color=always`
- [ ] Add / Update [the
documentation](https://github.com/volcengine/verl/tree/main/docs).
- [ ] Add unit or end-to-end test(s) to [the CI
workflow](https://github.com/volcengine/verl/tree/main/.github/workflows)
to cover all the code. If not feasible, explain why: ...
- [ ] Once your PR is ready for CI, send a message in [the `ci-request`
channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the
`verl` Slack
workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
(If not accessible, please try [the Feishu group
(飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).)
- [ ] If your PR is related to the `recipe` submodule, please also
update the reference to the submodule commit via `git submodule update
--remote` or `cd recipe && git pull origin main`.
ArronHZG added a commit that referenced this pull request Feb 6, 2026
…ly async / one step off) (#5184)

### What does this PR do?

* Add a new Ray Trainer class to facilitate reusing the core logic.
* And fix  fully async / one step off CI.
* Currently, our parameter synchronization logic is still in a broken
state.

CI break in #4280


### Checklist Before Starting

- [x] Search for similar PRs. Paste at least one query link here: ...
- [x] Format the PR title as `[{modules}] {type}: {description}` (This
will be checked by the CI)
- `{modules}` include `fsdp`, `megatron`, `veomni`, `sglang`, `vllm`,
`rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`,
`deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`,
`model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data`, `cfg`, `reward`
- If this PR involves multiple modules, separate them with `,` like
`[megatron, fsdp, doc]`
  - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test`
- If this PR breaks any API (CLI arguments, config, function signature,
etc.), add `[BREAKING]` to the beginning of the title.
  - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching`

### Test

> For changes that can not be tested by CI (e.g., algorithm
implementation, new model support), validate by experiment(s) and show
results like training curve plots, evaluation results, etc.

### API and Usage Example

> Demonstrate how the API changes if any, and provide usage example(s)
if possible.

```python
# Add code snippet or script demonstrating how to use this
```

### Design & Code Changes

> Demonstrate the high-level design if this PR is complex, and list the
specific changes.

### Checklist Before Submitting

> [!IMPORTANT]
> Please check all the following items before requesting a review,
otherwise the reviewer might deprioritize this PR for review.

- [x] Read the [Contribute
Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md).
- [x] Apply [pre-commit
checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting):
`pre-commit install && pre-commit run --all-files --show-diff-on-failure
--color=always`
- [x] Add / Update [the
documentation](https://github.com/volcengine/verl/tree/main/docs).
- [x] Add unit or end-to-end test(s) to [the CI
workflow](https://github.com/volcengine/verl/tree/main/.github/workflows)
to cover all the code. If not feasible, explain why: ...
- [x] Once your PR is ready for CI, send a message in [the `ci-request`
channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the
`verl` Slack
workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
(If not accessible, please try [the Feishu group
(飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).)
- [ ] If your PR is related to the `recipe` submodule, please also
update the reference to the submodule commit via `git submodule update
--remote` or `cd recipe && git pull origin main`.
Tjh-UKN pushed a commit to Tjh-UKN/verl that referenced this pull request Feb 13, 2026
…caused by multiple PRs (verl-project#5100)

### What does this PR do?

> Add **concise** overview of what this PR aims to achieve or
accomplish. Reference related GitHub issues and PRs that help with the
review.

**Problem1: ConfigAttributeError('Missing key config\n full_key:
config\n object_type=dict')**
This error was introduced by this
[PR](verl-project#5034): `dataset_config`
type was changed from `DictConfig` to `DictConfigWrap` in
`AgentLoopBase` initialization (using dataset_config.config for
passing), but the fully async agentloop failed to update
`dataset_config` to `DictConfigWrap`, causing the error.

The following two problems were introduced by this
[PR](verl-project#4280):

**Problem2: TypeError: got an unexpected keyword argument
'cuda_visible_devices'**
The PR added `cuda_visible_devices` to `vLLMHttpServer`, but its
subclass `vLLMHttpServerForPartial` in fully async was not updated
accordingly, causing conflicts.

**Problem3: KeyError: 'ASCEND_RT_VISIBLE_DEVICES'**
The PR references the environment variable `ASCEND_RT_VISIBLE_DEVICES`
in `get_device_uuid` but does not handle its absence or set a default
value, leading to potential errors.

### Checklist Before Starting

- [x] Search for similar PRs. Paste at least one query link here: ...
- [x] Format the PR title as `[{modules}] {type}: {description}` (This
will be checked by the CI)
- `{modules}` include `fsdp`, `megatron`, `veomni`, `sglang`, `vllm`,
`rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`,
`deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`,
`model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data`, `cfg`, `reward`
- If this PR involves multiple modules, separate them with `,` like
`[megatron, fsdp, doc]`
  - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test`
- If this PR breaks any API (CLI arguments, config, function signature,
etc.), add `[BREAKING]` to the beginning of the title.
  - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching`

### Test

> For changes that can not be tested by CI (e.g., algorithm
implementation, new model support), validate by experiment(s) and show
results like training curve plots, evaluation results, etc.

### API and Usage Example

> Demonstrate how the API changes if any, and provide usage example(s)
if possible.

```python
# Add code snippet or script demonstrating how to use this
```

### Design & Code Changes

> Demonstrate the high-level design if this PR is complex, and list the
specific changes.

### Checklist Before Submitting

> [!IMPORTANT]
> Please check all the following items before requesting a review,
otherwise the reviewer might deprioritize this PR for review.

- [x] Read the [Contribute
Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md).
- [x] Apply [pre-commit
checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting):
`pre-commit install && pre-commit run --all-files --show-diff-on-failure
--color=always`
- [ ] Add / Update [the
documentation](https://github.com/volcengine/verl/tree/main/docs).
- [ ] Add unit or end-to-end test(s) to [the CI
workflow](https://github.com/volcengine/verl/tree/main/.github/workflows)
to cover all the code. If not feasible, explain why: ...
- [ ] Once your PR is ready for CI, send a message in [the `ci-request`
channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the
`verl` Slack
workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
(If not accessible, please try [the Feishu group
(飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).)
- [ ] If your PR is related to the `recipe` submodule, please also
update the reference to the submodule commit via `git submodule update
--remote` or `cd recipe && git pull origin main`.
Tjh-UKN pushed a commit to Tjh-UKN/verl that referenced this pull request Feb 13, 2026
…ly async / one step off) (verl-project#5184)

### What does this PR do?

* Add a new Ray Trainer class to facilitate reusing the core logic.
* And fix  fully async / one step off CI.
* Currently, our parameter synchronization logic is still in a broken
state.

CI break in verl-project#4280


### Checklist Before Starting

- [x] Search for similar PRs. Paste at least one query link here: ...
- [x] Format the PR title as `[{modules}] {type}: {description}` (This
will be checked by the CI)
- `{modules}` include `fsdp`, `megatron`, `veomni`, `sglang`, `vllm`,
`rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`,
`deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`,
`model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data`, `cfg`, `reward`
- If this PR involves multiple modules, separate them with `,` like
`[megatron, fsdp, doc]`
  - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test`
- If this PR breaks any API (CLI arguments, config, function signature,
etc.), add `[BREAKING]` to the beginning of the title.
  - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching`

### Test

> For changes that can not be tested by CI (e.g., algorithm
implementation, new model support), validate by experiment(s) and show
results like training curve plots, evaluation results, etc.

### API and Usage Example

> Demonstrate how the API changes if any, and provide usage example(s)
if possible.

```python
# Add code snippet or script demonstrating how to use this
```

### Design & Code Changes

> Demonstrate the high-level design if this PR is complex, and list the
specific changes.

### Checklist Before Submitting

> [!IMPORTANT]
> Please check all the following items before requesting a review,
otherwise the reviewer might deprioritize this PR for review.

- [x] Read the [Contribute
Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md).
- [x] Apply [pre-commit
checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting):
`pre-commit install && pre-commit run --all-files --show-diff-on-failure
--color=always`
- [x] Add / Update [the
documentation](https://github.com/volcengine/verl/tree/main/docs).
- [x] Add unit or end-to-end test(s) to [the CI
workflow](https://github.com/volcengine/verl/tree/main/.github/workflows)
to cover all the code. If not feasible, explain why: ...
- [x] Once your PR is ready for CI, send a message in [the `ci-request`
channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the
`verl` Slack
workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
(If not accessible, please try [the Feishu group
(飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).)
- [ ] If your PR is related to the `recipe` submodule, please also
update the reference to the submodule commit via `git submodule update
--remote` or `cd recipe && git pull origin main`.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

6 participants