Skip to content

Add more thirdparty tests#586

Merged
gmarkall merged 22 commits intoNVIDIA:mainfrom
gmarkall:thirdparty-tests
Nov 20, 2025
Merged

Add more thirdparty tests#586
gmarkall merged 22 commits intoNVIDIA:mainfrom
gmarkall:thirdparty-tests

Conversation

@gmarkall
Copy link
Contributor

@gmarkall gmarkall commented Nov 10, 2025

This adds tests of additional third party libraries and fixes up issues that were found during testing them. Notes on the changes:

  • The latest release, 0.6.0, of nvmath-python is used, and its device API tests are run.
  • nvmath-python patches types.number_domain, which was not handled by our vendoring. The changes in cudaimpl.py resolve this issue.
  • nvmath-python also creates extensions that can lead to a Numba-CUDA Signature class leaking into Numba, which checks for an instance of a Numba Signature only. The change in templates.py mitigates this by always constructing core Signature instances, if Numba is present.
  • I tested the code with my "Extending Numba CUDA" tutorials, and noticed that the Dim3 and GridGroup were not in our types package, so I've added these back. I haven't added these examples as part of our CI as there would be some extra work involved in converting them to tests, but I may add them in a future PR.
  • Awkward 2.8.10 is used for tests, as outlined in Running Awkward test suite as part of Numba-CUDA CI scikit-hep/awkward#3587
  • The nvmath-python tests take 45 minutes so I've set them to only run on pushes to main rather than slowing down CI for PR testing. This is a little less than ideal, but better than increasing the iteration time for testing in CI. The commit e85e8d7 demonstrates that they are successful (green tick from CI) before the commit fa92cb2 sets them to only run on main.
  • It may be possible to run a reduced set of nvmath-python tests for every PR, but I need to work with the nvmath-python team to understand how to do that without sacrificing too much coverage.

@gmarkall gmarkall added the 2 - In Progress Currently a work in progress label Nov 10, 2025
@copy-pr-bot
Copy link

copy-pr-bot bot commented Nov 10, 2025

Auto-sync is disabled for draft pull requests in this repository. Workflows must be run manually.

Contributors can view more details about this message here.

@gmarkall
Copy link
Contributor Author

/ok to test

@cpcloud
Copy link
Contributor

cpcloud commented Nov 10, 2025

Can we exercise the pixi build infrastructure for this? It looks like nvmath-python@0.6.0 is available on conda-forge.

@gmarkall
Copy link
Contributor Author

/ok to test

@gmarkall
Copy link
Contributor Author

/ok to test

@gmarkall
Copy link
Contributor Author

Can we exercise the pixi build infrastructure for this? It looks like nvmath-python@0.6.0 is available on conda-forge.

I'm not sure - what does it mean for us to "exercise the pixi build infrastructure"? Where should I look to get an understanding? (Unfortunately I've not kept up with developments in this area so I'm not sure what to focus on to begin understanding the question)

@gmarkall
Copy link
Contributor Author

/ok to test

@gmarkall
Copy link
Contributor Author

/ok to test

@gmarkall
Copy link
Contributor Author

/ok to test

@gmarkall
Copy link
Contributor Author

/ok to test

@gmarkall
Copy link
Contributor Author

/ok to test

@gmarkall
Copy link
Contributor Author

/ok to test

@gmarkall
Copy link
Contributor Author

/ok to test

@gmarkall
Copy link
Contributor Author

/ok to test

@gmarkall
Copy link
Contributor Author

/ok to test

@gmarkall
Copy link
Contributor Author

/ok to test

@gmarkall
Copy link
Contributor Author

/ok to test

@gmarkall
Copy link
Contributor Author

/ok to test

@gmarkall
Copy link
Contributor Author

/ok to test

@gmarkall gmarkall added 3 - Ready for Review Ready for review by team and removed 2 - In Progress Currently a work in progress labels Nov 17, 2025
@gmarkall gmarkall marked this pull request as ready for review November 17, 2025 20:44
@copy-pr-bot
Copy link

copy-pr-bot bot commented Nov 17, 2025

Auto-sync is disabled for ready for review pull requests in this repository. Workflows must be run manually.

Contributors can view more details about this message here.

# Required for nvmath-python to locate pip-install MathDx
export SYS_PREFIX=`python -c "import sys; print(sys.prefix)"`
export MATHDX_HOME=${SYS_PREFIX}/lib/python3.13/site-packages/nvidia/mathdx
python -m pytest nvmath_tests/device --tb=native -x
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

RE: clogging up CI, did you try scaling out with multiple pytest workers?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I did, but the tests use a lot of memory so it's not easy to find a sweet spot that speeds things up and doesn't OOM.

Copy link
Contributor

@brandon-b-miller brandon-b-miller left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

One non-blocking Q

@gmarkall
Copy link
Contributor Author

/ok to test

@rparolin rparolin self-requested a review November 19, 2025 00:29
@gmarkall
Copy link
Contributor Author

Thanks for the reviews! I'm still needing to resolve the issue with pr-builder / run being considered skipped, prior to merging this.

@gmarkall
Copy link
Contributor Author

/ok to test

@gmarkall gmarkall mentioned this pull request Nov 20, 2025
@gmarkall gmarkall merged commit 9862f7e into NVIDIA:main Nov 20, 2025
71 checks passed
@gmarkall gmarkall added 5 - Ready to merge Testing and reviews complete, ready to merge and removed 3 - Ready for Review Ready for review by team labels Nov 20, 2025
gmarkall added a commit to gmarkall/numba-cuda that referenced this pull request Nov 20, 2025
- Add support for cache-hinted load and store operations (NVIDIA#587)
- Add more thirdparty tests (NVIDIA#586)
- Add sphinx-lint to pre-commit and fix errors (NVIDIA#597)
- Add DWARF variant part support for polymorphic variables in CUDA debug info (NVIDIA#544)
- chore: clean up dead workaround for unavailable `lru_cache` (NVIDIA#598)
- chore(docs): format types docs (NVIDIA#596)
- refactor: decouple `Context` from `Stream` and `Event` objects (NVIDIA#579)
- Fix freezing in of constant arrays with negative strides (NVIDIA#589)
- Update tests to accept variants of generated PTX (NVIDIA#585)
- refactor: replace device functionality with `cuda.core` APIs (NVIDIA#581)
- Move frontend tests to `cudapy` namespace (NVIDIA#558)
- Generalize the concurrency group for main merges (NVIDIA#582)
- ci: move pre-commit checks to pre commit action (NVIDIA#577)
- chore(pixi): set up doc builds; remove most `build-conda` dependencies (NVIDIA#574)
- ci: ensure that python version in ci matches matrix (NVIDIA#575)
- Fix the `cuda.is_supported_version()` API (NVIDIA#571)
- Fix checks on main (NVIDIA#576)
- feat: add `math.nextafter` (NVIDIA#543)
- ci: replace conda testing with pixi (NVIDIA#554)
- [CI] Run PR workflow on merge to main (NVIDIA#572)
- Propose Alternative Module Path for `ext_types` and Maintain `numba.cuda.types.bfloat16` Import API (NVIDIA#569)
- test: enable fail-on-warn and clean up resulting failures (NVIDIA#529)
- [Refactor][NFC] Vendor-in compiler_lock for future CUDA-specific changes (NVIDIA#565)
- Fix registration with Numba, vendor MakeFunctionToJITFunction tests (NVIDIA#566)
- [Refactor][NFC][Cleanups] Update imports to upstream numba to use the numba.cuda modules (NVIDIA#561)
- test: refactor process-based tests to use concurrent futures in order to simplify tests (NVIDIA#550)
- test: revert back to ipc futures that await each iteration (NVIDIA#564)
- chore(deps): move to self-contained pixi.toml to avoid mixed-pypi-pixi environments (NVIDIA#551)
- [Refactor][NFC] Vendor-in errors for future CUDA-specific changes (NVIDIA#534)
- Remove dependencies on target_extension for CUDA target (NVIDIA#555)
- Relax the pinning to `cuda-core` to allow it floating across minor releases (NVIDIA#559)
- [WIP] Port numpy reduction tests to CUDA (NVIDIA#523)
- ci: add timeout to avoid blocking the job queue (NVIDIA#556)
- Handle `cuda.core.Stream` in driver operations (NVIDIA#401)
- feat: add support for `math.exp2` (NVIDIA#541)
- Vendor in types and datamodel for CUDA-specific changes (NVIDIA#533)
- refactor: cleanup device constructor (NVIDIA#548)
- bench: add cupy to array constructor kernel launch benchmarks (NVIDIA#547)
- perf: cache dimension computations (NVIDIA#542)
- perf: remove duplicated size computation (NVIDIA#537)
- chore(perf): add torch to benchmark (NVIDIA#539)
- test: speed up ipc tests by ~6.5x (NVIDIA#527)
- perf: speed up kernel launch (NVIDIA#510)
- perf: remove context threading in various pointer abstractions (NVIDIA#536)
- perf: reduce the number of `__cuda_array_interface__` accesses (NVIDIA#538)
- refactor: remove unnecessary custom map and set implementations (NVIDIA#530)
- [Refactor][NFC] Vendor-in vectorize decorators for future CUDA-specific changes (NVIDIA#513)
- test: add benchmarks for kernel launch for reproducibility (NVIDIA#528)
- test(pixi): update pixi testing command to work with the new `testing` directory (NVIDIA#522)
- refactor: fully remove `USE_NV_BINDING` (NVIDIA#525)
- Draft: Vendor in the IR module (NVIDIA#439)
- pyproject.toml: add search path for Pyrefly (NVIDIA#524)
- Vendor in numba.core.typing for CUDA-specific changes (NVIDIA#473)
- Use numba.config when available, otherwise use numba.cuda.config (NVIDIA#497)
- [MNT] Drop NUMBA_CUDA_USE_NVIDIA_BINDING; always use cuda.core and cuda.bindings as fallback (NVIDIA#479)
- Vendor in dispatcher, entrypoints, pretty_annotate for CUDA-specific changes (NVIDIA#502)
- build: allow parallelization of nvcc testing builds (NVIDIA#521)
- chore(dev-deps): add pixi (NVIDIA#505)
- Vendor the imputils module for CUDA refactoring (NVIDIA#448)
- Don't use `MemoryLeakMixin` for tests that don't use NRT (NVIDIA#519)
- Switch back to stable cuDF release in thirdparty tests (NVIDIA#518)
- Updating .gitignore with binaries in the `testing` folder (NVIDIA#516)
- Remove some unnecessary uses of ContextResettingTestCase (NVIDIA#507)
- Vendor in _helperlib cext for CUDA-specific changes (NVIDIA#512)
- Vendor in typeconv for future CUDA-specific changes (NVIDIA#499)
- [Refactor][NFC] Vendor-in numba.cpython modules for future CUDA-specific changes (NVIDIA#493)
- [Refactor][NFC] Vendor-in numba.np modules for future CUDA-specific changes (NVIDIA#494)
- Make the CUDA target the default for CUDA overload decorators (NVIDIA#511)
- Remove C extension loading hacks (NVIDIA#506)
- Ensure NUMBA can manipulate memory from CUDA graphs before the graph is launched (NVIDIA#437)
- [Refactor][NFC] Vendor-in core Numba analysis utils for CUDA-specific changes (NVIDIA#433)
- Fix Bf16 Test OB Error (NVIDIA#509)
- Vendor in components from numba.core.runtime for CUDA-specific changes (NVIDIA#498)
- [Refactor] Vendor in _dispatcher, _devicearray, mviewbuf C extension for CUDA-specific customization (NVIDIA#373)
- [MNT] Managed UM memset fallback and skip CUDA IPC tests on WSL2 (NVIDIA#488)
- Improve debug value range coverage (NVIDIA#461)
- Add `compile_all` API (NVIDIA#484)
- Vendor in core.registry for CUDA-specific changes (NVIDIA#485)
- [Refactor][NFC] Vendor in numba.misc for CUDA-specific changes (NVIDIA#457)
- Vendor in optional, boxing for CUDA-specific changes, fix dangling imports (NVIDIA#476)
- [test] Remove dependency on cpu_target (NVIDIA#490)
- Change dangling imports of numba.core.lowering to numba.cuda.lowering (NVIDIA#475)
- [test] Use numpy's tolerance for float16 (NVIDIA#491)
- [Refactor][NFC] Vendor-in numba.extending for future CUDA-specific changes (NVIDIA#466)
- [Refactor][NFC] Vendor-in more cpython registries for future CUDA-specific changes (NVIDIA#478)
@gmarkall gmarkall mentioned this pull request Nov 20, 2025
gmarkall added a commit that referenced this pull request Nov 20, 2025
- Add support for cache-hinted load and store operations (#587)
- Add more thirdparty tests (#586)
- Add sphinx-lint to pre-commit and fix errors (#597)
- Add DWARF variant part support for polymorphic variables in CUDA debug
info (#544)
- chore: clean up dead workaround for unavailable `lru_cache` (#598)
- chore(docs): format types docs (#596)
- refactor: decouple `Context` from `Stream` and `Event` objects (#579)
- Fix freezing in of constant arrays with negative strides (#589)
- Update tests to accept variants of generated PTX (#585)
- refactor: replace device functionality with `cuda.core` APIs (#581)
- Move frontend tests to `cudapy` namespace (#558)
- Generalize the concurrency group for main merges (#582)
- ci: move pre-commit checks to pre commit action (#577)
- chore(pixi): set up doc builds; remove most `build-conda` dependencies
(#574)
- ci: ensure that python version in ci matches matrix (#575)
- Fix the `cuda.is_supported_version()` API (#571)
- Fix checks on main (#576)
- feat: add `math.nextafter` (#543)
- ci: replace conda testing with pixi (#554)
- [CI] Run PR workflow on merge to main (#572)
- Propose Alternative Module Path for `ext_types` and Maintain
`numba.cuda.types.bfloat16` Import API (#569)
- test: enable fail-on-warn and clean up resulting failures (#529)
- [Refactor][NFC] Vendor-in compiler_lock for future CUDA-specific
changes (#565)
- Fix registration with Numba, vendor MakeFunctionToJITFunction tests
(#566)
- [Refactor][NFC][Cleanups] Update imports to upstream numba to use the
numba.cuda modules (#561)
- test: refactor process-based tests to use concurrent futures in order
to simplify tests (#550)
- test: revert back to ipc futures that await each iteration (#564)
- chore(deps): move to self-contained pixi.toml to avoid mixed-pypi-pixi
environments (#551)
- [Refactor][NFC] Vendor-in errors for future CUDA-specific changes
(#534)
- Remove dependencies on target_extension for CUDA target (#555)
- Relax the pinning to `cuda-core` to allow it floating across minor
releases (#559)
- [WIP] Port numpy reduction tests to CUDA (#523)
- ci: add timeout to avoid blocking the job queue (#556)
- Handle `cuda.core.Stream` in driver operations (#401)
- feat: add support for `math.exp2` (#541)
- Vendor in types and datamodel for CUDA-specific changes (#533)
- refactor: cleanup device constructor (#548)
- bench: add cupy to array constructor kernel launch benchmarks (#547)
- perf: cache dimension computations (#542)
- perf: remove duplicated size computation (#537)
- chore(perf): add torch to benchmark (#539)
- test: speed up ipc tests by ~6.5x (#527)
- perf: speed up kernel launch (#510)
- perf: remove context threading in various pointer abstractions (#536)
- perf: reduce the number of `__cuda_array_interface__` accesses (#538)
- refactor: remove unnecessary custom map and set implementations (#530)
- [Refactor][NFC] Vendor-in vectorize decorators for future
CUDA-specific changes (#513)
- test: add benchmarks for kernel launch for reproducibility (#528)
- test(pixi): update pixi testing command to work with the new `testing`
directory (#522)
- refactor: fully remove `USE_NV_BINDING` (#525)
- Draft: Vendor in the IR module (#439)
- pyproject.toml: add search path for Pyrefly (#524)
- Vendor in numba.core.typing for CUDA-specific changes (#473)
- Use numba.config when available, otherwise use numba.cuda.config
(#497)
- [MNT] Drop NUMBA_CUDA_USE_NVIDIA_BINDING; always use cuda.core and
cuda.bindings as fallback (#479)
- Vendor in dispatcher, entrypoints, pretty_annotate for CUDA-specific
changes (#502)
- build: allow parallelization of nvcc testing builds (#521)
- chore(dev-deps): add pixi (#505)
- Vendor the imputils module for CUDA refactoring (#448)
- Don't use `MemoryLeakMixin` for tests that don't use NRT (#519)
- Switch back to stable cuDF release in thirdparty tests (#518)
- Updating .gitignore with binaries in the `testing` folder (#516)
- Remove some unnecessary uses of ContextResettingTestCase (#507)
- Vendor in _helperlib cext for CUDA-specific changes (#512)
- Vendor in typeconv for future CUDA-specific changes (#499)
- [Refactor][NFC] Vendor-in numba.cpython modules for future
CUDA-specific changes (#493)
- [Refactor][NFC] Vendor-in numba.np modules for future CUDA-specific
changes (#494)
- Make the CUDA target the default for CUDA overload decorators (#511)
- Remove C extension loading hacks (#506)
- Ensure NUMBA can manipulate memory from CUDA graphs before the graph
is launched (#437)
- [Refactor][NFC] Vendor-in core Numba analysis utils for CUDA-specific
changes (#433)
- Fix Bf16 Test OB Error (#509)
- Vendor in components from numba.core.runtime for CUDA-specific changes
(#498)
- [Refactor] Vendor in _dispatcher, _devicearray, mviewbuf C extension
for CUDA-specific customization (#373)
- [MNT] Managed UM memset fallback and skip CUDA IPC tests on WSL2
(#488)
- Improve debug value range coverage (#461)
- Add `compile_all` API (#484)
- Vendor in core.registry for CUDA-specific changes (#485)
- [Refactor][NFC] Vendor in numba.misc for CUDA-specific changes (#457)
- Vendor in optional, boxing for CUDA-specific changes, fix dangling
imports (#476)
- [test] Remove dependency on cpu_target (#490)
- Change dangling imports of numba.core.lowering to numba.cuda.lowering
(#475)
- [test] Use numpy's tolerance for float16 (#491)
- [Refactor][NFC] Vendor-in numba.extending for future CUDA-specific
changes (#466)
- [Refactor][NFC] Vendor-in more cpython registries for future
CUDA-specific changes (#478)

<!--

Thank you for contributing to numba-cuda :)

Here are some guidelines to help the review process go smoothly.

1. Please write a description in this text box of the changes that are
being
   made.

2. Please ensure that you have written units tests for the changes
made/features
   added.

3. If you are closing an issue please use one of the automatic closing
words as
noted here:
https://help.github.com/articles/closing-issues-using-keywords/

4. If your pull request is not ready for review but you want to make use
of the
continuous integration testing facilities please label it with `[WIP]`.

5. If your pull request is ready to be reviewed without requiring
additional
work on top of it, then remove the `[WIP]` label (if present) and
replace
it with `[REVIEW]`. If assistance is required to complete the
functionality,
for example when the C/C++ code of a feature is complete but Python
bindings
are still required, then add the label `[HELP-REQ]` so that others can
triage
and assist. The additional changes then can be implemented on top of the
same PR. If the assistance is done by members of the rapidsAI team, then
no
additional actions are required by the creator of the original PR for
this,
otherwise the original author of the PR needs to give permission to the
person(s) assisting to commit to their personal fork of the project. If
that
doesn't happen then a new PR based on the code of the original PR can be
opened by the person assisting, which then will be the PR that will be
   merged.

6. Once all work has been done and review has taken place please do not
add
features or make changes out of the scope of those requested by the
reviewer
(doing this just add delays as already reviewed code ends up having to
be
re-reviewed/it is hard to tell what is new etc!). Further, please do not
rebase your branch on main/force push/rewrite history, doing any of
these
   causes the context of any comments made by reviewers to be lost. If
   conflicts occur against main they should be resolved by merging main
   into the branch used for making the pull request.

Many thanks in advance for your cooperation!

-->
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

5 - Ready to merge Testing and reviews complete, ready to merge

Projects

None yet

Development

Successfully merging this pull request may close these issues.

5 participants