Skip to content

Commit

Permalink
Merge pull request #1155 from borglab/decisiontree-refactor
Browse files Browse the repository at this point in the history
  • Loading branch information
dellaert authored Apr 14, 2022
2 parents 27c7bfe + 8e6a583 commit 78d7e90
Show file tree
Hide file tree
Showing 6 changed files with 163 additions and 72 deletions.
160 changes: 113 additions & 47 deletions gtsam/discrete/DecisionTree-inl.h
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,7 @@ namespace gtsam {
/** constant stored in this leaf */
Y constant_;

/** The number of assignments contained within this leaf
/** The number of assignments contained within this leaf.
* Particularly useful when leaves have been pruned.
*/
size_t nrAssignments_;
Expand All @@ -68,7 +68,7 @@ namespace gtsam {
Leaf(const Y& constant, size_t nrAssignments = 1)
: constant_(constant), nrAssignments_(nrAssignments) {}

/** return the constant */
/// Return the constant
const Y& constant() const {
return constant_;
}
Expand All @@ -81,19 +81,19 @@ namespace gtsam {
return constant_ == q.constant_;
}

/// polymorphic equality: is q is a leaf, could be
/// polymorphic equality: is q a leaf and is it the same as this leaf?
bool sameLeaf(const Node& q) const override {
return (q.isLeaf() && q.sameLeaf(*this));
}

/** equality up to tolerance */
/// equality up to tolerance
bool equals(const Node& q, const CompareFunc& compare) const override {
const Leaf* other = dynamic_cast<const Leaf*>(&q);
if (!other) return false;
return compare(this->constant_, other->constant_);
}

/** print */
/// print
void print(const std::string& s, const LabelFormatter& labelFormatter,
const ValueFormatter& valueFormatter) const override {
std::cout << s << " Leaf " << valueFormatter(constant_) << std::endl;
Expand Down Expand Up @@ -122,8 +122,8 @@ namespace gtsam {

/// Apply unary operator with assignment
NodePtr apply(const UnaryAssignment& op,
const Assignment<L>& choices) const override {
NodePtr f(new Leaf(op(choices, constant_), nrAssignments_));
const Assignment<L>& assignment) const override {
NodePtr f(new Leaf(op(assignment, constant_), nrAssignments_));
return f;
}

Expand Down Expand Up @@ -168,7 +168,10 @@ namespace gtsam {
std::vector<NodePtr> branches_;

private:
/** incremental allSame */
/**
* Incremental allSame.
* Records if all the branches are the same leaf.
*/
size_t allSame_;

using ChoicePtr = boost::shared_ptr<const Choice>;
Expand All @@ -181,9 +184,9 @@ namespace gtsam {
#endif
}

/** If all branches of a choice node f are the same, just return a branch */
/// If all branches of a choice node f are the same, just return a branch.
static NodePtr Unique(const ChoicePtr& f) {
#ifndef DT_NO_PRUNING
#ifndef GTSAM_DT_NO_PRUNING
if (f->allSame_) {
assert(f->branches().size() > 0);
NodePtr f0 = f->branches_[0];
Expand All @@ -205,15 +208,13 @@ namespace gtsam {

bool isLeaf() const override { return false; }

/** Constructor, given choice label and mandatory expected branch count */
/// Constructor, given choice label and mandatory expected branch count.
Choice(const L& label, size_t count) :
label_(label), allSame_(true) {
branches_.reserve(count);
}

/**
* Construct from applying binary op to two Choice nodes
*/
/// Construct from applying binary op to two Choice nodes.
Choice(const Choice& f, const Choice& g, const Binary& op) :
allSame_(true) {
// Choose what to do based on label
Expand Down Expand Up @@ -241,6 +242,7 @@ namespace gtsam {
}
}

/// Return the label of this choice node.
const L& label() const {
return label_;
}
Expand All @@ -262,7 +264,7 @@ namespace gtsam {
branches_.push_back(node);
}

/** print (as a tree) */
/// print (as a tree).
void print(const std::string& s, const LabelFormatter& labelFormatter,
const ValueFormatter& valueFormatter) const override {
std::cout << s << " Choice(";
Expand Down Expand Up @@ -308,7 +310,7 @@ namespace gtsam {
return (q.isLeaf() && q.sameLeaf(*this));
}

/** equality */
/// equality
bool equals(const Node& q, const CompareFunc& compare) const override {
const Choice* other = dynamic_cast<const Choice*>(&q);
if (!other) return false;
Expand All @@ -321,7 +323,7 @@ namespace gtsam {
return true;
}

/** evaluate */
/// evaluate
const Y& operator()(const Assignment<L>& x) const override {
#ifndef NDEBUG
typename Assignment<L>::const_iterator it = x.find(label_);
Expand All @@ -336,13 +338,13 @@ namespace gtsam {
return (*child)(x);
}

/**
* Construct from applying unary op to a Choice node
*/
/// Construct from applying unary op to a Choice node.
Choice(const L& label, const Choice& f, const Unary& op) :
label_(label), allSame_(true) {
branches_.reserve(f.branches_.size()); // reserve space
for (const NodePtr& branch : f.branches_) push_back(branch->apply(op));
for (const NodePtr& branch : f.branches_) {
push_back(branch->apply(op));
}
}

/**
Expand All @@ -353,37 +355,37 @@ namespace gtsam {
* @param f The original choice node to apply the op on.
* @param op Function to apply on the choice node. Takes Assignment and
* value as arguments.
* @param choices The Assignment that will go to op.
* @param assignment The Assignment that will go to op.
*/
Choice(const L& label, const Choice& f, const UnaryAssignment& op,
const Assignment<L>& choices)
const Assignment<L>& assignment)
: label_(label), allSame_(true) {
branches_.reserve(f.branches_.size()); // reserve space

Assignment<L> choices_ = choices;
Assignment<L> assignment_ = assignment;

for (size_t i = 0; i < f.branches_.size(); i++) {
choices_[label_] = i; // Set assignment for label to i
assignment_[label_] = i; // Set assignment for label to i

const NodePtr branch = f.branches_[i];
push_back(branch->apply(op, choices_));
push_back(branch->apply(op, assignment_));

// Remove the choice so we are backtracking
auto choice_it = choices_.find(label_);
choices_.erase(choice_it);
// Remove the assignment so we are backtracking
auto assignment_it = assignment_.find(label_);
assignment_.erase(assignment_it);
}
}

/** apply unary operator */
/// apply unary operator.
NodePtr apply(const Unary& op) const override {
auto r = boost::make_shared<Choice>(label_, *this, op);
return Unique(r);
}

/// Apply unary operator with assignment
NodePtr apply(const UnaryAssignment& op,
const Assignment<L>& choices) const override {
auto r = boost::make_shared<Choice>(label_, *this, op, choices);
const Assignment<L>& assignment) const override {
auto r = boost::make_shared<Choice>(label_, *this, op, assignment);
return Unique(r);
}

Expand Down Expand Up @@ -678,7 +680,16 @@ namespace gtsam {
}

/****************************************************************************/
// Functor performing depth-first visit without Assignment<L> argument.
/**
* Functor performing depth-first visit to each leaf with the leaf value as
* the argument.
*
* NOTE: We differentiate between leaves and assignments. Concretely, a 3
* binary variable tree will have 2^3=8 assignments, but based on pruning, it
* can have less than 8 leaves. For example, if a tree has all assignment
* values as 1, then pruning will cause the tree to have only 1 leaf yet 8
* assignments.
*/
template <typename L, typename Y>
struct Visit {
using F = std::function<void(const Y&)>;
Expand Down Expand Up @@ -707,33 +718,74 @@ namespace gtsam {
}

/****************************************************************************/
// Functor performing depth-first visit with Assignment<L> argument.
/**
* Functor performing depth-first visit to each leaf with the Leaf object
* passed as an argument.
*
* NOTE: We differentiate between leaves and assignments. Concretely, a 3
* binary variable tree will have 2^3=8 assignments, but based on pruning, it
* can have <8 leaves. For example, if a tree has all assignment values as 1,
* then pruning will cause the tree to have only 1 leaf yet 8 assignments.
*/
template <typename L, typename Y>
struct VisitLeaf {
using F = std::function<void(const typename DecisionTree<L, Y>::Leaf&)>;
explicit VisitLeaf(F f) : f(f) {} ///< Construct from folding function.
F f; ///< folding function object.

/// Do a depth-first visit on the tree rooted at node.
void operator()(const typename DecisionTree<L, Y>::NodePtr& node) const {
using Leaf = typename DecisionTree<L, Y>::Leaf;
if (auto leaf = boost::dynamic_pointer_cast<const Leaf>(node))
return f(*leaf);

using Choice = typename DecisionTree<L, Y>::Choice;
auto choice = boost::dynamic_pointer_cast<const Choice>(node);
if (!choice)
throw std::invalid_argument("DecisionTree::VisitLeaf: Invalid NodePtr");
for (auto&& branch : choice->branches()) (*this)(branch); // recurse!
}
};

template <typename L, typename Y>
template <typename Func>
void DecisionTree<L, Y>::visitLeaf(Func f) const {
VisitLeaf<L, Y> visit(f);
visit(root_);
}

/****************************************************************************/
/**
* Functor performing depth-first visit to each leaf with the leaf's
* `Assignment<L>` and value passed as arguments.
*
* NOTE: Follows the same pruning semantics as `visit`.
*/
template <typename L, typename Y>
struct VisitWith {
using Choices = Assignment<L>;
using F = std::function<void(const Choices&, const Y&)>;
using F = std::function<void(const Assignment<L>&, const Y&)>;
explicit VisitWith(F f) : f(f) {} ///< Construct from folding function.
Choices choices; ///< Assignment, mutating through recursion.
F f; ///< folding function object.
Assignment<L> assignment; ///< Assignment, mutating through recursion.
F f; ///< folding function object.

/// Do a depth-first visit on the tree rooted at node.
void operator()(const typename DecisionTree<L, Y>::NodePtr& node) {
using Leaf = typename DecisionTree<L, Y>::Leaf;
if (auto leaf = boost::dynamic_pointer_cast<const Leaf>(node))
return f(choices, leaf->constant());
return f(assignment, leaf->constant());

using Choice = typename DecisionTree<L, Y>::Choice;
auto choice = boost::dynamic_pointer_cast<const Choice>(node);
if (!choice)
throw std::invalid_argument("DecisionTree::VisitWith: Invalid NodePtr");
for (size_t i = 0; i < choice->nrChoices(); i++) {
choices[choice->label()] = i; // Set assignment for label to i
assignment[choice->label()] = i; // Set assignment for label to i

(*this)(choice->branches()[i]); // recurse!

// Remove the choice so we are backtracking
auto choice_it = choices.find(choice->label());
choices.erase(choice_it);
auto choice_it = assignment.find(choice->label());
assignment.erase(choice_it);
}
}
};
Expand Down Expand Up @@ -763,12 +815,26 @@ namespace gtsam {
}

/****************************************************************************/
// labels is just done with a visit
/**
* Get (partial) labels by performing a visit.
*
* This method performs a depth-first search to go to every leaf and records
* the keys assignment which leads to that leaf. Since the tree can be pruned,
* there might be a leaf at a lower depth which results in a partial
* assignment (i.e. not all keys are specified).
*
* E.g. given a tree with 3 keys, there may be a branch where the 3rd key has
* the same values for all the leaves. This leads to the branch being pruned
* so we get a leaf which is arrived at by just the first 2 keys and their
* assignments.
*/
template <typename L, typename Y>
std::set<L> DecisionTree<L, Y>::labels() const {
std::set<L> unique;
auto f = [&](const Assignment<L>& choices, const Y&) {
for (auto&& kv : choices) unique.insert(kv.first);
auto f = [&](const Assignment<L>& assignment, const Y&) {
for (auto&& kv : assignment) {
unique.insert(kv.first);
}
};
visitWith(f);
return unique;
Expand Down Expand Up @@ -817,8 +883,8 @@ namespace gtsam {
throw std::runtime_error(
"DecisionTree::apply(unary op) undefined for empty tree.");
}
Assignment<L> choices;
return DecisionTree(root_->apply(op, choices));
Assignment<L> assignment;
return DecisionTree(root_->apply(op, assignment));
}

/****************************************************************************/
Expand Down
Loading

0 comments on commit 78d7e90

Please sign in to comment.