-
Notifications
You must be signed in to change notification settings - Fork 434
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Testing #40
Comments
Few days after this issue was created, was merge request #52, "use With this comment are now those two connected. How helpfull this comment (this connection) is something that can be told in a next comment. Thing I'm aim for is a comment that tells which how helpful cargo test is, when builds are done without |
Yeah, we can use this issue for testing in general. It's something we should probably take a look at relatively soon. |
Seems like there was a sporadic test failure here: https://github.com/Rust-for-Linux/linux/runs/1921879052 (the only change from the previous commit which passed was a comment). Not sure if it's something to worry about. |
Hmm... It doesn't look like it is us, since it happens before we run any Rust code, but we could have broken some invariant somewhere nevertheless. Do you want to post it to the LKML? (It would be best to reproduce it first without the Rust stuff compiled in, though). Related: perhaps we should add a CI run to compile things without enabling Rust but with our changes, and start using |
As I mentioned elsewhere, I will be splitting Later on, after the RFC most likely, I will be working on setting up a proper test framework so that we can write tests as easy as in normal Rust. |
[@wedsonaf pointed me at this issue because I am looking at the closely related question of 'how can we use formal verification tools with Rust?' - and Rust-for-Linux might be a really good use for the tools. In particular, I want to create a verification harness that can also be used as a test-harness or fuzzing harness.] When looking at the current samples, it looks as if there are two important decisions about testing (or verification):
I am currently exploring the No/No choice. That is, I am modifying rust/kernel/.rs so that it does not rely on bindings:: types/functions and I am trying to write tests that use Rust types like UserSlicePtr, File, etc. and invoke Rust methods to manipulate those objects instead of trying to invoke drivers by creating inodes with the right major/minor device numbers and invoking the standard C-shaped system calls. I'm making the No/No choice because I specifically want to focus on the Rust code and because I want to be able to write generic tests that benefit from Rust's traits, etc. So far I have exactly one test working. It checks that Once I have more of the mocking layer implemented, my plan is to use the KLEE verification tool to look for bugs such as integer overflows, array bounds violations, etc. in the Rust code. I will also use the same test harness with a fuzzer as an alternative way of looking for bugs. I am hoping that being able to verify/fuzz for these low level bugs would make it less painful/worrying to disable runtime checks in production builds. Questions:
|
Just a quick idea. You could use no mangling and extern fn to create a mock library which shadows every C function used by the kernel rust crate. So you use the normal rust/kernel but that links against some custom kernel with shadows functions |
Thanks. I think there's several places where I could cut the dependencies and insert my mock. The C interface has the huge advantage of being (I think) fairly stable. But it's also a bit low level. Some places where I think it would be easier to modify rust/kernel/*.rs are as follows. (Where modify probably means 'refactor to expose the right interfaces and then use conditional compilation.) First: to call FileOperations::read, you need to pass a &File. The File struct contains a pointer to bindings::file so I need to create a pointer to a file somehow. I think that the only way to create a file object is to invoke C code in the kernel. At the moment, I am YOLOing it and passing a null pointer but this only works because (AFAIK) the code I am testing does not use the two public methods on File both of which dereference it - but that is not going to work in the long term. Second: There are Rust functions that I think can be simplified down to no-ops (for testing purposes). For example, the Registration::register function in rust/kernel/miscdev.rs jumps through a bunch of hoops to initialize a C device object, construct a VTABLE, etc. so that it can call bindings::misc_register. If I understand this correctly, the only purpose for this is so that the C part of the Linux kernel can use the major/minor device numbers on an inode to decide which device driver to invoke. Since my plan for testing sidesteps that mechanism, this is not needed. (This is a bit less clear cut - and, in this case, your suggestion also works and is simpler in some ways.) Third: In part because formal verification of Rust is in its infancy, there don't seem to be any verifiers that support concurrency at the moment. So the entire content of rust/kernel/sync is a problem because the verifier does not support threads, mutexes, semaphores, etc. Getting the right behaviour (or, at least, a sufficiently good approximation) here will almost certainly require some major surgery. This won't necessarily affect conventional testing and fuzzing - but it is a major issue for me. At the moment, my feeling is that I am going to have to use several different approaches here: sometimes making the cut at the Rust-C interface as you suggest, sometimes making the cut in the Rust code. But it's early days and I expect that I will end up having to discard and redo my first attempt or two... |
My plan is to work on supporting unit tests. I am not aware of anybody working on anything else. At the moment, we only have a few sanity functional tests for the CI.
Hard to answer :) Perhaps having a meeting for this would be best. My gut feeling is that userspace functional tests are currently the most valuable given it is still early days. They are likely the easiest to write and the most stable ones.
In general, I would be cautious about changing interfaces to accommodate testing/mocking. This is not to say we should not do it: if we can show it has a big impact, we should definitely push for it. However, we first need to get Rust proven within the kernel.
There may be some particular places where we want to do unchecked operations due to performance reasons, and the policy is to justify every
Please note that the kernel internal APIs are not stable. However, it is true that, at the moment, the Rust ones are likely to change more than the C ones (by virtue of being new). But longer-term there would be nothing that would make the Rust ones more or less stable than the C ones.
That sounds great. Has there been any project on using KLEE for the C side? Any showstoppers? Another thing I would like to have is Miri/KASAN/UBSAN etc. for the Rust side. |
Thanks for your comments. All makes sense.
My interpretation of Linus Torvalds' comment on your RFC was that any panics from the Rust code were unacceptable to him. He focused on the out-of-memory panic that can be fixed by using a panic-free memory API but I'd think that he would have the same reaction to the 'invisible' panics inserted by the compiler to implement runtime overflow checks and runtime array bounds checks because they also cause the kernel to halt with loss of service and potential loss of data.
I think it has been used once - but other C verification tools have been used far more. Which suggests that there might be problems that made them stop?
Yes, definitely! In fact, maybe the right development sequence is:
("Parameterized tests" are also called "structure-aware fuzzing", "property-based testing" or "verification harnesses" - depending on which tool you are thinking about using - but they are more or less the same thing and writing tests that can be used for all is my preferred way of using KLEE.) Having said that, I might jump straight from (1) to (3) because the KLEE part is the bit that worries me most and is my primary focus. |
They are very different cases:
That is why latter ones should panic the same way dereferencing the start of the address space does (whether such a panic should kill only the current thread or the entire kernel is another question). Furthermore, in general, potential loss of data is way better than silent corruption of data. Similarly, denial of service is way better than getting a server compromised.
Of course, feel free to take the approach that you prefer, the one that you think will net more benefits or the one that is best for your research. My points in the previous message were only about what I think we can handle/merge at the present time (e.g. refactoring many things before we have managed to get Rust in mainline may be problematic). |
I am sure you have seen it already, but just in case: Rust has a nice library for property-based testing called |
Yes, I like proptest a lot! btw In case you're interested, here is the status of getting KLEE to work with Rust (another blog article). |
…frame() The following KASAN warning is detected by QEMU. ================================================================== BUG: KASAN: stack-out-of-bounds in unwind_frame+0x508/0x870 Read of size 4 at addr c36bba90 by task cat/163 CPU: 1 PID: 163 Comm: cat Not tainted 5.10.0-rc1 #40 Hardware name: ARM-Versatile Express [<c0113fac>] (unwind_backtrace) from [<c010e71c>] (show_stack+0x10/0x14) [<c010e71c>] (show_stack) from [<c0b805b4>] (dump_stack+0x98/0xb0) [<c0b805b4>] (dump_stack) from [<c0b7d658>] (print_address_description.constprop.0+0x58/0x4bc) [<c0b7d658>] (print_address_description.constprop.0) from [<c031435c>] (kasan_report+0x154/0x170) [<c031435c>] (kasan_report) from [<c0113c44>] (unwind_frame+0x508/0x870) [<c0113c44>] (unwind_frame) from [<c010e298>] (__save_stack_trace+0x110/0x134) [<c010e298>] (__save_stack_trace) from [<c01ce0d8>] (stack_trace_save+0x8c/0xb4) [<c01ce0d8>] (stack_trace_save) from [<c0313520>] (kasan_set_track+0x38/0x60) [<c0313520>] (kasan_set_track) from [<c0314cb8>] (kasan_set_free_info+0x20/0x2c) [<c0314cb8>] (kasan_set_free_info) from [<c0313474>] (__kasan_slab_free+0xec/0x120) [<c0313474>] (__kasan_slab_free) from [<c0311e20>] (kmem_cache_free+0x7c/0x334) [<c0311e20>] (kmem_cache_free) from [<c01c35dc>] (rcu_core+0x390/0xccc) [<c01c35dc>] (rcu_core) from [<c01013a8>] (__do_softirq+0x180/0x518) [<c01013a8>] (__do_softirq) from [<c0135214>] (irq_exit+0x9c/0xe0) [<c0135214>] (irq_exit) from [<c01a40e4>] (__handle_domain_irq+0xb0/0x110) [<c01a40e4>] (__handle_domain_irq) from [<c0691248>] (gic_handle_irq+0xa0/0xb8) [<c0691248>] (gic_handle_irq) from [<c0100b0c>] (__irq_svc+0x6c/0x94) Exception stack(0xc36bb928 to 0xc36bb970) b920: c36bb9c0 00000000 c0126919 c0101228 c36bb9c0 b76d7730 b940: c36b8000 c36bb9a0 c3335b00 c01ce0d8 00000003 c36bba3c c36bb940 c36bb978 b960: c010e298 c011373c 60000013 ffffffff [<c0100b0c>] (__irq_svc) from [<c011373c>] (unwind_frame+0x0/0x870) [<c011373c>] (unwind_frame) from [<00000000>] (0x0) The buggy address belongs to the page: page:(ptrval) refcount:0 mapcount:0 mapping:00000000 index:0x0 pfn:0x636bb flags: 0x0() raw: 00000000 00000000 ef867764 00000000 00000000 00000000 ffffffff 00000000 page dumped because: kasan: bad access detected addr c36bba90 is located in stack of task cat/163 at offset 48 in frame: stack_trace_save+0x0/0xb4 this frame has 1 object: [32, 48) 'trace' Memory state around the buggy address: c36bb980: f1 f1 f1 f1 00 04 f2 f2 00 00 f3 f3 00 00 00 00 c36bba00: 00 00 00 00 00 00 00 00 00 00 00 00 f1 f1 f1 f1 >c36bba80: 00 00 f3 f3 00 00 00 00 00 00 00 00 00 00 00 00 ^ c36bbb00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 c36bbb80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ================================================================== There is a same issue on x86 and has been resolved by the commit f7d27c3 ("x86/mm, kasan: Silence KASAN warnings in get_wchan()"). The solution could be applied to arm architecture too. Signed-off-by: Lin Yujun <[email protected]> Reported-by: He Ying <[email protected]> Signed-off-by: Russell King (Oracle) <[email protected]>
We use uprobe in aarch64_be, which we found the tracee task would exit due to SIGILL when we enable the uprobe trace. We can see the replace inst from uprobe is not correct in aarch big-endian. As in Armv8-A, instruction fetches are always treated as little-endian, we should treat the UPROBE_SWBP_INSN as little-endian。 The test case is as following。 bash-4.4# ./mqueue_test_aarchbe 1 1 2 1 10 > /dev/null & bash-4.4# cd /sys/kernel/debug/tracing/ bash-4.4# echo 'p:test /mqueue_test_aarchbe:0xc30 %x0 %x1' > uprobe_events bash-4.4# echo 1 > events/uprobes/enable bash-4.4# bash-4.4# ps PID TTY TIME CMD 140 ? 00:00:01 bash 237 ? 00:00:00 ps [1]+ Illegal instruction ./mqueue_test_aarchbe 1 1 2 1 100 > /dev/null which we debug use gdb as following: bash-4.4# gdb attach 155 (gdb) disassemble send Dump of assembler code for function send: 0x0000000000400c30 <+0>: .inst 0xa00020d4 ; undefined 0x0000000000400c34 <+4>: mov x29, sp 0x0000000000400c38 <+8>: str w0, [sp, Rust-for-Linux#28] 0x0000000000400c3c <+12>: strb w1, [sp, Rust-for-Linux#27] 0x0000000000400c40 <+16>: str xzr, [sp, Rust-for-Linux#40] 0x0000000000400c44 <+20>: str xzr, [sp, Rust-for-Linux#48] 0x0000000000400c48 <+24>: add x0, sp, #0x1b 0x0000000000400c4c <+28>: mov w3, #0x0 // #0 0x0000000000400c50 <+32>: mov x2, #0x1 // Rust-for-Linux#1 0x0000000000400c54 <+36>: mov x1, x0 0x0000000000400c58 <+40>: ldr w0, [sp, Rust-for-Linux#28] 0x0000000000400c5c <+44>: bl 0x405e10 <mq_send> 0x0000000000400c60 <+48>: str w0, [sp, Rust-for-Linux#60] 0x0000000000400c64 <+52>: ldr w0, [sp, Rust-for-Linux#60] 0x0000000000400c68 <+56>: ldp x29, x30, [sp], Rust-for-Linux#64 0x0000000000400c6c <+60>: ret End of assembler dump. (gdb) info b No breakpoints or watchpoints. (gdb) c Continuing. Program received signal SIGILL, Illegal instruction. 0x0000000000400c30 in send () (gdb) x/10x 0x400c30 0x400c30 <send>: 0xd42000a0 0xfd030091 0xe01f00b9 0xe16f0039 0x400c40 <send+16>: 0xff1700f9 0xff1b00f9 0xe06f0091 0x03008052 0x400c50 <send+32>: 0x220080d2 0xe10300aa (gdb) disassemble 0x400c30 Dump of assembler code for function send: => 0x0000000000400c30 <+0>: .inst 0xa00020d4 ; undefined 0x0000000000400c34 <+4>: mov x29, sp 0x0000000000400c38 <+8>: str w0, [sp, Rust-for-Linux#28] 0x0000000000400c3c <+12>: strb w1, [sp, Rust-for-Linux#27] 0x0000000000400c40 <+16>: str xzr, [sp, Rust-for-Linux#40] Signed-off-by: junhua huang <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Will Deacon <[email protected]>
Inject fault while probing btrfs.ko, if kstrdup() fails in eventfs_prepare_ef() in eventfs_add_dir(), it will return ERR_PTR to assign file->ef. But the eventfs_remove() check NULL in trace_module_remove_events(), which causes the below NULL pointer dereference. As both Masami and Steven suggest, allocater side should handle the error carefully and remove it, so fix the places where it failed. Could not create tracefs 'raid56_write' directory Btrfs loaded, zoned=no, fsverity=no Unable to handle kernel NULL pointer dereference at virtual address 000000000000001c Mem abort info: ESR = 0x0000000096000004 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x04: level 0 translation fault Data abort info: ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 CM = 0, WnR = 0, TnD = 0, TagAccess = 0 GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 user pgtable: 4k pages, 48-bit VAs, pgdp=0000000102544000 [000000000000001c] pgd=0000000000000000, p4d=0000000000000000 Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP Dumping ftrace buffer: (ftrace buffer empty) Modules linked in: btrfs(-) libcrc32c xor xor_neon raid6_pq cfg80211 rfkill 8021q garp mrp stp llc ipv6 [last unloaded: btrfs] CPU: 15 PID: 1343 Comm: rmmod Tainted: G N 6.5.0+ #40 Hardware name: linux,dummy-virt (DT) pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : eventfs_remove_rec+0x24/0xc0 lr : eventfs_remove+0x68/0x1d8 sp : ffff800082d63b60 x29: ffff800082d63b60 x28: ffffb84b80ddd00c x27: ffffb84b3054ba40 x26: 0000000000000002 x25: ffff800082d63bf8 x24: ffffb84b8398e440 x23: ffffb84b82af3000 x22: dead000000000100 x21: dead000000000122 x20: ffff800082d63bf8 x19: fffffffffffffff4 x18: ffffb84b82508820 x17: 0000000000000000 x16: 0000000000000000 x15: 000083bc876a3166 x14: 000000000000006d x13: 000000000000006d x12: 0000000000000000 x11: 0000000000000001 x10: 00000000000017e0 x9 : 0000000000000001 x8 : 0000000000000000 x7 : 0000000000000000 x6 : ffffb84b84289804 x5 : 0000000000000000 x4 : 9696969696969697 x3 : ffff33a5b7601f38 x2 : 0000000000000000 x1 : ffff800082d63bf8 x0 : fffffffffffffff4 Call trace: eventfs_remove_rec+0x24/0xc0 eventfs_remove+0x68/0x1d8 remove_event_file_dir+0x88/0x100 event_remove+0x140/0x15c trace_module_notify+0x1fc/0x230 notifier_call_chain+0x98/0x17c blocking_notifier_call_chain+0x4c/0x74 __arm64_sys_delete_module+0x1a4/0x298 invoke_syscall+0x44/0x100 el0_svc_common.constprop.1+0x68/0xe0 do_el0_svc+0x1c/0x28 el0_svc+0x3c/0xc4 el0t_64_sync_handler+0xa0/0xc4 el0t_64_sync+0x174/0x178 Code: 5400052c a90153b3 aa0003f3 aa0103f4 (f9401400) ---[ end trace 0000000000000000 ]--- Kernel panic - not syncing: Oops: Fatal exception SMP: stopping secondary CPUs Dumping ftrace buffer: (ftrace buffer empty) Kernel Offset: 0x384b00c00000 from 0xffff800080000000 PHYS_OFFSET: 0xffffcc5b80000000 CPU features: 0x88000203,3c020000,1000421b Memory Limit: none Rebooting in 1 seconds.. Link: https://lore.kernel.org/linux-trace-kernel/[email protected] Link: https://lore.kernel.org/all/[email protected]/ Link: https://lore.kernel.org/all/[email protected]/ Link: https://lore.kernel.org/all/[email protected]/ Link: https://lore.kernel.org/all/[email protected]/ Cc: Ajay Kaher <[email protected]> Fixes: 5bdcd5f ("eventfs: Implement removal of meta data from eventfs") Signed-off-by: Jinjie Ruan <[email protected]> Suggested-by: Masami Hiramatsu (Google) <[email protected]> Suggested-by: Steven Rostedt <[email protected]> Signed-off-by: Steven Rostedt (Google) <[email protected]>
A last minute revert in 6.7-final introduced a potential deadlock when enabling ASPM during probe of Qualcomm PCIe controllers as reported by lockdep: ============================================ WARNING: possible recursive locking detected 6.7.0 #40 Not tainted -------------------------------------------- kworker/u16:5/90 is trying to acquire lock: ffffacfa78ced000 (pci_bus_sem){++++}-{3:3}, at: pcie_aspm_pm_state_change+0x58/0xdc but task is already holding lock: ffffacfa78ced000 (pci_bus_sem){++++}-{3:3}, at: pci_walk_bus+0x34/0xbc other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(pci_bus_sem); lock(pci_bus_sem); *** DEADLOCK *** Call trace: print_deadlock_bug+0x25c/0x348 __lock_acquire+0x10a4/0x2064 lock_acquire+0x1e8/0x318 down_read+0x60/0x184 pcie_aspm_pm_state_change+0x58/0xdc pci_set_full_power_state+0xa8/0x114 pci_set_power_state+0xc4/0x120 qcom_pcie_enable_aspm+0x1c/0x3c [pcie_qcom] pci_walk_bus+0x64/0xbc qcom_pcie_host_post_init_2_7_0+0x28/0x34 [pcie_qcom] The deadlock can easily be reproduced on machines like the Lenovo ThinkPad X13s by adding a delay to increase the race window during asynchronous probe where another thread can take a write lock. Add a new pci_set_power_state_locked() and associated helper functions that can be called with the PCI bus semaphore held to avoid taking the read lock twice. Link: https://lore.kernel.org/r/[email protected] Link: https://lore.kernel.org/r/[email protected] Fixes: f93e71a ("Revert "PCI/ASPM: Remove pcie_aspm_pm_state_change()"") Signed-off-by: Johan Hovold <[email protected]> Signed-off-by: Bjorn Helgaas <[email protected]> Cc: <[email protected]> # 6.7
The queue stats API queries the queues according to the real_num_[tr]x_queues, in case the device is down and channels were not yet created, don't try to query their statistics. To trigger the panic, run this command before the interface is brought up: ./cli.py --spec ../../../Documentation/netlink/specs/netdev.yaml --dump qstats-get --json '{"ifindex": 4}' BUG: kernel NULL pointer dereference, address: 0000000000000c00 PGD 0 P4D 0 Oops: Oops: 0000 [#1] SMP PTI CPU: 3 UID: 0 PID: 977 Comm: python3 Not tainted 6.10.0+ #40 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:mlx5e_get_queue_stats_rx+0x3c/0xb0 [mlx5_core] Code: fc 55 48 63 ee 53 48 89 d3 e8 40 3d 70 e1 85 c0 74 58 4c 89 ef e8 d4 07 04 00 84 c0 75 41 49 8b 84 24 f8 39 00 00 48 8b 04 e8 <48> 8b 90 00 0c 00 00 48 03 90 40 0a 00 00 48 89 53 08 48 8b 90 08 RSP: 0018:ffff888116be37d0 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff888116be3868 RCX: 0000000000000004 RDX: ffff88810ada4000 RSI: 0000000000000000 RDI: ffff888109df09c0 RBP: 0000000000000000 R08: 0000000000000004 R09: 0000000000000004 R10: ffff88813461901c R11: ffffffffffffffff R12: ffff888109df0000 R13: ffff888109df09c0 R14: ffff888116be38d0 R15: 0000000000000000 FS: 00007f4375d5c740(0000) GS:ffff88852c980000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000c00 CR3: 0000000106ada006 CR4: 0000000000370eb0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ? __die+0x1f/0x60 ? page_fault_oops+0x14e/0x3d0 ? exc_page_fault+0x73/0x130 ? asm_exc_page_fault+0x22/0x30 ? mlx5e_get_queue_stats_rx+0x3c/0xb0 [mlx5_core] netdev_nl_stats_by_netdev+0x2a6/0x4c0 ? __rmqueue_pcplist+0x351/0x6f0 netdev_nl_qstats_get_dumpit+0xc4/0x1b0 genl_dumpit+0x2d/0x80 netlink_dump+0x199/0x410 __netlink_dump_start+0x1aa/0x2c0 genl_family_rcv_msg_dumpit+0x94/0xf0 ? __pfx_genl_start+0x10/0x10 ? __pfx_genl_dumpit+0x10/0x10 ? __pfx_genl_done+0x10/0x10 genl_rcv_msg+0x116/0x2b0 ? __pfx_netdev_nl_qstats_get_dumpit+0x10/0x10 ? __pfx_genl_rcv_msg+0x10/0x10 netlink_rcv_skb+0x54/0x100 genl_rcv+0x24/0x40 netlink_unicast+0x21a/0x340 netlink_sendmsg+0x1f4/0x440 __sys_sendto+0x1b6/0x1c0 ? do_sock_setsockopt+0xc3/0x180 ? __sys_setsockopt+0x60/0xb0 __x64_sys_sendto+0x20/0x30 do_syscall_64+0x50/0x110 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7f43757132b0 Code: c0 ff ff ff ff eb b8 0f 1f 00 f3 0f 1e fa 41 89 ca 64 8b 04 25 18 00 00 00 85 c0 75 1d 45 31 c9 45 31 c0 b8 2c 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 68 c3 0f 1f 80 00 00 00 00 41 54 48 83 ec 20 RSP: 002b:00007ffd258da048 EFLAGS: 00000246 ORIG_RAX: 000000000000002c RAX: ffffffffffffffda RBX: 00007ffd258da0f8 RCX: 00007f43757132b0 RDX: 000000000000001c RSI: 00007f437464b850 RDI: 0000000000000003 RBP: 00007f4375085de0 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: ffffffffc4653600 R14: 0000000000000001 R15: 00007f43751a6147 </TASK> Modules linked in: netconsole xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink xt_addrtype iptable_nat nf_nat br_netfilter rpcsec_gss_krb5 auth_rpcgss oid_registry overlay rpcrdma rdma_ucm ib_iser libiscsi scsi_transport_iscsi ib_umad rdma_cm ib_ipoib iw_cm ib_cm mlx5_ib ib_uverbs ib_core zram zsmalloc mlx5_core fuse [last unloaded: netconsole] CR2: 0000000000000c00 ---[ end trace 0000000000000000 ]--- RIP: 0010:mlx5e_get_queue_stats_rx+0x3c/0xb0 [mlx5_core] Code: fc 55 48 63 ee 53 48 89 d3 e8 40 3d 70 e1 85 c0 74 58 4c 89 ef e8 d4 07 04 00 84 c0 75 41 49 8b 84 24 f8 39 00 00 48 8b 04 e8 <48> 8b 90 00 0c 00 00 48 03 90 40 0a 00 00 48 89 53 08 48 8b 90 08 RSP: 0018:ffff888116be37d0 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff888116be3868 RCX: 0000000000000004 RDX: ffff88810ada4000 RSI: 0000000000000000 RDI: ffff888109df09c0 RBP: 0000000000000000 R08: 0000000000000004 R09: 0000000000000004 R10: ffff88813461901c R11: ffffffffffffffff R12: ffff888109df0000 R13: ffff888109df09c0 R14: ffff888116be38d0 R15: 0000000000000000 FS: 00007f4375d5c740(0000) GS:ffff88852c980000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000c00 CR3: 0000000106ada006 CR4: 0000000000370eb0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Fixes: 7b66ae5 ("net/mlx5e: Add per queue netdev-genl stats") Signed-off-by: Gal Pressman <[email protected]> Signed-off-by: Tariq Toukan <[email protected]> Reviewed-by: Joe Damato <[email protected]> Link: https://patch.msgid.link/[email protected] Signed-off-by: Jakub Kicinski <[email protected]>
Closing -- this was a very "general" issue. Nowadays we have several ways of testing Rust code (and docs about it). If there is something that needs to be done here, then we should probably create more focused/targeted issues. |
Create some way to run rust test.
Bindgen creates tests, for allignment. maybe we can test them somehow.
The text was updated successfully, but these errors were encountered: