-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Convex hulls of multiple convex sets (#21594)
* Convex hulls of multiple convex sets * fix typo * remove unnecessary headers * remove std::move * address Alex's comments * address comments * augment test and address comments * empty tests * last form * remove optional and address comments * address Grant's comments * grammar fix
- Loading branch information
1 parent
cae8253
commit 75fc21f
Showing
4 changed files
with
617 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,272 @@ | ||
#include "drake/geometry/optimization/convex_hull.h" | ||
|
||
#include <limits> | ||
#include <memory> | ||
|
||
#include <drake/common/symbolic/expression/variables.h> | ||
|
||
#include "drake/solvers/solve.h" | ||
|
||
namespace drake { | ||
namespace geometry { | ||
namespace optimization { | ||
|
||
using Eigen::Map; | ||
using Eigen::MatrixXd; | ||
using Eigen::VectorXd; | ||
using solvers::Binding; | ||
using solvers::Constraint; | ||
using solvers::LinearConstraint; | ||
using solvers::MathematicalProgram; | ||
using solvers::ProgramAttribute; | ||
using solvers::ProgramAttributes; | ||
using solvers::VectorXDecisionVariable; | ||
using symbolic::Expression; | ||
using symbolic::Variable; | ||
|
||
namespace { | ||
|
||
int GetAmbientDimension(const ConvexSets& sets) { | ||
if (sets.empty()) { | ||
return 0; | ||
} | ||
const int ambient_dimension = sets[0]->ambient_dimension(); | ||
for (const copyable_unique_ptr<ConvexSet>& set : sets) { | ||
DRAKE_THROW_UNLESS(set != nullptr); | ||
DRAKE_THROW_UNLESS(set->ambient_dimension() == ambient_dimension); | ||
} | ||
return ambient_dimension; | ||
} | ||
|
||
// Add the new variables to the existing_variables from the bindings. | ||
void AddNewVariables( | ||
const std::vector<solvers::Binding<solvers::Constraint>>& bindings, | ||
symbolic::Variables* existing_variables) { | ||
for (const auto& binding : bindings) { | ||
const auto& vars = binding.variables(); | ||
existing_variables->insert(symbolic::Variables(vars)); | ||
} | ||
} | ||
|
||
// Given a vector of convex sets, return a vector of non-empty convex sets if | ||
// remove_empty_sets is true, otherwise return the original vector. | ||
ConvexSets MakeParticipartingSets(const ConvexSets& sets, | ||
const bool remove_empty_sets) { | ||
if (!remove_empty_sets) { | ||
return sets; | ||
} | ||
ConvexSets non_empty_sets; | ||
for (const auto& set : sets) { | ||
if (!set->IsEmpty()) { | ||
non_empty_sets.push_back(set); | ||
} | ||
} | ||
return non_empty_sets; | ||
} | ||
} // namespace | ||
|
||
ConvexHull::ConvexHull(const ConvexSets& sets, const bool remove_empty_sets) | ||
: ConvexSet(GetAmbientDimension(sets), false), | ||
sets_(sets), | ||
participating_sets_{MakeParticipartingSets(sets_, remove_empty_sets)}, | ||
empty_sets_removed_(remove_empty_sets) {} | ||
|
||
ConvexHull::~ConvexHull() = default; | ||
|
||
const ConvexSet& ConvexHull::element(int index) const { | ||
DRAKE_THROW_UNLESS(0 <= index && index < std::ssize(sets_)); | ||
return *sets_[index]; | ||
} | ||
|
||
std::unique_ptr<ConvexSet> ConvexHull::DoClone() const { | ||
return std::make_unique<ConvexHull>(*this); | ||
} | ||
|
||
std::optional<bool> ConvexHull::DoIsBoundedShortcut() const { | ||
return std::nullopt; | ||
} | ||
|
||
bool ConvexHull::DoIsEmpty() const { | ||
if (empty_sets_removed_) { | ||
return participating_sets_.empty(); | ||
} | ||
// If empty_sets_removed_ is false, then we reconstruct the | ||
// participating_sets_ and check if it is empty. | ||
return ConvexHull(sets_, true).IsEmpty(); | ||
} | ||
|
||
std::optional<VectorXd> ConvexHull::DoMaybeGetPoint() const { | ||
return std::nullopt; | ||
} | ||
|
||
bool ConvexHull::DoPointInSet(const Eigen::Ref<const Eigen::VectorXd>& x, | ||
double tol) const { | ||
// Check the feasibility of |x - ∑ᵢ xᵢ| <= tol * 1, xᵢ ∈ 𝛼ᵢXᵢ, 𝛼ᵢ ≥ 0, ∑ᵢ 𝛼ᵢ = | ||
// 1, where 1 is a vector of ones and |.| is interpreted element-wise. | ||
MathematicalProgram prog; | ||
const int n = std::ssize(participating_sets_); | ||
const int d = ambient_dimension(); | ||
// x_sets is d * n, each column is a variable for a convex set | ||
auto x_sets = prog.NewContinuousVariables(d, n, "x_sets"); | ||
auto alpha = prog.NewContinuousVariables(n, "alpha"); | ||
// constraint: x - tol * 1 ≤ ∑ᵢ xᵢ ≤ x + tol * 1 | ||
Eigen::VectorXd ones = Eigen::VectorXd::Ones(n); | ||
for (int i = 0; i < d; ++i) { | ||
prog.AddLinearConstraint(Eigen::VectorXd::Ones(n), x(i) - tol, x(i) + tol, | ||
x_sets.row(i)); | ||
} | ||
// constraint: ∑ᵢ αᵢ = 1 | ||
prog.AddLinearEqualityConstraint(Eigen::MatrixXd::Ones(1, n), | ||
VectorXd::Ones(1), alpha); | ||
// constraint: 1 ≥ αᵢ ≥ 0 | ||
prog.AddBoundingBoxConstraint(0, 1, alpha); | ||
// Add the constraints for each convex set. | ||
for (int i = 0; i < n; ++i) { | ||
participating_sets_[i]->AddPointInNonnegativeScalingConstraints( | ||
&prog, x_sets.col(i), alpha(i)); | ||
} | ||
// Check feasibility. | ||
const auto result = solvers::Solve(prog); | ||
return result.is_success(); | ||
} | ||
|
||
std::pair<VectorX<symbolic::Variable>, | ||
std::vector<solvers::Binding<solvers::Constraint>>> | ||
ConvexHull::DoAddPointInSetConstraints( | ||
solvers::MathematicalProgram* prog, | ||
const Eigen::Ref<const solvers::VectorXDecisionVariable>& vars) const { | ||
// Add the constraint that vars = ∑ᵢ xᵢ, xᵢ ∈ 𝛼ᵢXᵢ, 𝛼ᵢ ≥ 0, ∑ᵢ 𝛼ᵢ = 1. | ||
const int n = std::ssize(participating_sets_); | ||
const int d = ambient_dimension(); | ||
// The variable is d * n, each column is a variable for a convex set | ||
auto x_sets = prog->NewContinuousVariables(d, n, "x_sets"); | ||
auto alpha = prog->NewContinuousVariables(n, "alpha"); | ||
std::vector<solvers::Binding<solvers::Constraint>> new_bindings; | ||
new_bindings.push_back(prog->AddBoundingBoxConstraint(0, 1, alpha)); | ||
// constraint: vars - ∑ᵢ xᵢ == 0 -> (1 ... 1 -1)(x_sets[i, :], vars) = 0 | ||
Eigen::VectorXd a(n + 1); | ||
a.head(n) = Eigen::VectorXd::Ones(n); | ||
a(n) = -1; | ||
for (int i = 0; i < d; ++i) { | ||
Eigen::Ref<const solvers::VectorXDecisionVariable> vars_i = | ||
vars.segment(i, 1); | ||
solvers::VectorXDecisionVariable x_i_vars(n + 1); | ||
x_i_vars.head(n) = x_sets.row(i); | ||
x_i_vars(n) = vars(i); | ||
new_bindings.push_back(prog->AddLinearEqualityConstraint(a, 0, x_i_vars)); | ||
} | ||
// constraint: ∑ᵢ αᵢ = 1 | ||
new_bindings.push_back(prog->AddLinearEqualityConstraint( | ||
Eigen::MatrixXd::Ones(1, n), VectorXd::Ones(1), alpha)); | ||
auto new_vars = drake::symbolic::Variables(); | ||
// add the constraints for each convex set | ||
for (int i = 0; i < n; ++i) { | ||
auto cons = participating_sets_[i]->AddPointInNonnegativeScalingConstraints( | ||
prog, x_sets.col(i), alpha(i)); | ||
new_bindings.insert(new_bindings.end(), cons.begin(), cons.end()); | ||
AddNewVariables(cons, &new_vars); | ||
} | ||
// Convert to std::vector<symbolic::Variable> because sets do not have | ||
// contiguous memory. | ||
std::vector<symbolic::Variable> new_vars_vec(new_vars.size()); | ||
std::move(new_vars.begin(), new_vars.end(), new_vars_vec.begin()); | ||
return std::make_pair(Eigen::Map<VectorX<symbolic::Variable>>( | ||
new_vars_vec.data(), new_vars_vec.size()), | ||
std::move(new_bindings)); | ||
} | ||
|
||
std::vector<solvers::Binding<solvers::Constraint>> | ||
ConvexHull::DoAddPointInNonnegativeScalingConstraints( | ||
solvers::MathematicalProgram* prog, | ||
const Eigen::Ref<const solvers::VectorXDecisionVariable>& x, | ||
const symbolic::Variable& t) const { | ||
// Add the constraint that t >= 0, x = ∑ᵢ xᵢ, xᵢ ∈ 𝛼ᵢXᵢ, 𝛼ᵢ ≥ 0, ∑ᵢ 𝛼ᵢ = t. | ||
const int n = std::ssize(participating_sets_); | ||
const int d = ambient_dimension(); | ||
// The new variable is d * n, each row is a variable for a convex set | ||
auto x_sets = prog->NewContinuousVariables(d, n, "x_sets"); | ||
auto alpha = prog->NewContinuousVariables(n, "alpha"); | ||
const double inf = std::numeric_limits<double>::infinity(); | ||
std::vector<solvers::Binding<solvers::Constraint>> new_bindings; | ||
// Constraint I: -x + ∑ᵢ xᵢ == 0 | ||
Eigen::VectorXd a(n + 1); | ||
a.head(n) = Eigen::VectorXd::Ones(n); | ||
a(n) = -1; | ||
for (int i = 0; i < d; ++i) { | ||
solvers::VectorXDecisionVariable x_sets_i_x(n + 1); | ||
x_sets_i_x.head(n) = x_sets.row(i); | ||
x_sets_i_x(n) = x(i); | ||
new_bindings.push_back(prog->AddLinearEqualityConstraint(a, 0, x_sets_i_x)); | ||
} | ||
// Constraint II: ∑ᵢ αᵢ = t | ||
solvers::VectorXDecisionVariable alpha_t_vec(n + 1); | ||
alpha_t_vec.head(n) = alpha; | ||
alpha_t_vec(n) = t; | ||
new_bindings.push_back(prog->AddLinearEqualityConstraint(a, 0, alpha_t_vec)); | ||
// alpha should be positive. | ||
new_bindings.push_back(prog->AddBoundingBoxConstraint(0, inf, alpha)); | ||
// Finally add the constraints for each convex set. | ||
for (int i = 0; i < n; ++i) { | ||
auto cons = participating_sets_[i]->AddPointInNonnegativeScalingConstraints( | ||
prog, x_sets.col(i), alpha(i)); | ||
new_bindings.insert(new_bindings.end(), cons.begin(), cons.end()); | ||
} | ||
return new_bindings; | ||
} | ||
|
||
std::vector<solvers::Binding<solvers::Constraint>> | ||
ConvexHull::DoAddPointInNonnegativeScalingConstraints( | ||
solvers::MathematicalProgram* prog, | ||
const Eigen::Ref<const Eigen::MatrixXd>& A_x, | ||
const Eigen::Ref<const Eigen::VectorXd>& b_x, | ||
const Eigen::Ref<const Eigen::VectorXd>& c, double d, | ||
const Eigen::Ref<const solvers::VectorXDecisionVariable>& x, | ||
const Eigen::Ref<const solvers::VectorXDecisionVariable>& t) const { | ||
// Add the constraint that A_x * x + b_x = ∑ᵢ xᵢ, xᵢ ∈ 𝛼ᵢXᵢ, 𝛼ᵢ ≥ 0, | ||
// ∑ᵢ 𝛼ᵢ = c't + d. | ||
const int dim = ambient_dimension(); | ||
const int n = std::ssize(participating_sets_); | ||
// The new variable is dim * n, each column belongs to a convex set. | ||
auto x_sets = prog->NewContinuousVariables(dim, n, "x_sets"); | ||
auto alpha = prog->NewContinuousVariables(n, "alpha"); | ||
std::vector<solvers::Binding<solvers::Constraint>> new_bindings; | ||
// constraint: A_x * x - ∑ᵢ sᵢ == -b_x | ||
for (int i = 0; i < dim; ++i) { | ||
// A_x.row(i) * x - (1, ..., 1) xᵢ == -b_x[i] | ||
solvers::VectorXDecisionVariable x_sets_i_(dim + n); | ||
x_sets_i_.head(dim) = x; | ||
x_sets_i_.tail(n) = x_sets.row(i); | ||
Eigen::VectorXd a_sum(A_x.cols() + n); | ||
a_sum.head(A_x.cols()) = A_x.row(i); | ||
a_sum.tail(n) = -Eigen::VectorXd::Ones(n); | ||
new_bindings.push_back( | ||
prog->AddLinearEqualityConstraint(a_sum, -b_x[i], x_sets_i_)); | ||
} | ||
// constraint: ∑ᵢ αᵢ = c't + d | ||
const int p = c.size(); | ||
Eigen::VectorXd a_con(n + p); | ||
a_con.head(n) = Eigen::VectorXd::Ones(n); | ||
a_con.tail(p) = -c; | ||
solvers::VectorXDecisionVariable alpha_t_vec(n + p); | ||
alpha_t_vec.head(n) = alpha; | ||
alpha_t_vec.tail(p) = t; | ||
new_bindings.push_back( | ||
prog->AddLinearEqualityConstraint(a_con, d, alpha_t_vec)); | ||
// Add the inclusion constraints for each convex set. | ||
for (int i = 0; i < n; ++i) { | ||
auto cons = participating_sets_[i]->AddPointInNonnegativeScalingConstraints( | ||
prog, x_sets.col(i), alpha(i)); | ||
new_bindings.insert(new_bindings.end(), cons.begin(), cons.end()); | ||
} | ||
return new_bindings; | ||
} | ||
|
||
std::pair<std::unique_ptr<Shape>, math::RigidTransformd> | ||
ConvexHull::DoToShapeWithPose() const { | ||
throw std::runtime_error( | ||
"ToShapeWithPose is not implemented yet for ConvexHull."); | ||
} | ||
|
||
} // namespace optimization | ||
} // namespace geometry | ||
} // namespace drake |
Oops, something went wrong.