-
Notifications
You must be signed in to change notification settings - Fork 3.4k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Fix] TPU Training Type Plugin #6816
Conversation
Codecov Report
@@ Coverage Diff @@
## master #6816 +/- ##
=======================================
- Coverage 91% 87% -4%
=======================================
Files 192 192
Lines 12192 12146 -46
=======================================
- Hits 11149 10588 -561
- Misses 1043 1558 +515 |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
TPUSpawn post_dispath shoudn't be be removed entirely.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Awesome cleanup!
Is there any way we can test the hang is resolved?
@carmocca Previously, we used to have additional logic for Kaggle/Colab https://github.com/PyTorchLightning/pytorch-lightning/blob/master/pytorch_lightning/plugins/training_type/tpu_spawn.py#L130 As it is no longer required, the existing tests should be enough to test the training flow. |
* update readme by v1.2.x (#6728) * [bugfix] Add support for omegaconf and tpu (#6741) * fix_hydra * update changelog Co-authored-by: Your Name <[email protected]> * [docs] Update Bolts link (#6743) * Update Bolts link * Update Bolts link * formt Co-authored-by: Jirka Borovec <[email protected]> * Update logic for checking TPUs availability (#6767) * Update logic for checking TPUs availability * fix flake8 * add fix * resolve bug (#6781) * Fix validation progress counter with check_val_every_n_epoch > 1 (#5952) Co-authored-by: rohitgr7 <[email protected]> Co-authored-by: Carlos Mocholí <[email protected]> * Remove extinct parameters from lightning_module.rst (#6801) Fixes #6800 * Update TPU docs for installation (#6794) * fix boolean check on iterable dataset when len not defined (#6828) * fix iterable dataset len check * update predict and validate * add validate to test * add changelog * add predict * Sanitize `None` params during pruning (#6836) * sanitize none params during pruning * amend * Fix `unfreeze_and_add_param_group` expects `modules` rather than `module` (#6822) * Enforce an epoch scheduler interval when using SWA (#6588) Co-authored-by: Carlos Mocholi <[email protected]> * Fix DPP + SyncBN (#6838) * Fix DPP + SyncBN Ensure that model is already on correct GPU before applying SyncBN conversion * Fix order of SyncBN for ddp_spawn * [Fix] TPU Training Type Plugin (#6816) * Fix support for symlink save_dir in TensorBoardLogger (#6730) * Add test for symlink support and initial fix * Respond to comment and add docstring * Update CHANGELOG.md * Simplify * Update pytorch_lightning/utilities/cloud_io.py Co-authored-by: Carlos Mocholí <[email protected]> * Make `LightningLocalFileSystem` protected Co-authored-by: Carlos Mocholí <[email protected]> * Fixed missing arguments in `lr_find` call (#6784) There seem to be 3 arguments missing in the `lr_find` call in the tunining.py file. * Update Changelog & version * Fix TPU tests for checkpoint Skip advanced profiler for torch > 1.8 Skip pytorch profiler for torch > 1.8 Fix save checkpoint logic for TPUs Co-authored-by: Jirka Borovec <[email protected]> Co-authored-by: thomas chaton <[email protected]> Co-authored-by: Your Name <[email protected]> Co-authored-by: Akihiro Nitta <[email protected]> Co-authored-by: Yuan-Hang Zhang <[email protected]> Co-authored-by: rohitgr7 <[email protected]> Co-authored-by: Carlos Mocholí <[email protected]> Co-authored-by: Elizaveta Logacheva <[email protected]> Co-authored-by: Adrian Wälchli <[email protected]> Co-authored-by: Karthik Prasad <[email protected]> Co-authored-by: Sadiq Jaffer <[email protected]> Co-authored-by: Michael Baumgartner <[email protected]> Co-authored-by: Eugene Khvedchenya <[email protected]> Co-authored-by: Ethan Harris <[email protected]> Co-authored-by: Tharindu Hasthika <[email protected]>
…ter) to github/third-party/PyTorchLightning/pytorch-lightning Summary: ### New commit log messages ## [UnReleased] - 2021-MM-DD ### Added - Added more explicit exception message when trying to execute `trainer.test()` or `trainer.validate()` with `fast_dev_run=True` ([#6667](Lightning-AI/pytorch-lightning#6667)) - Added `LightningCLI` class to provide simple reproducibility with minimum boilerplate training cli. ([#4492](Lightning-AI/pytorch-lightning#4492)) - Trigger warning when non-metric logged value with multi processes hasn't been reduced ([#6417](Lightning-AI/pytorch-lightning#6417)) - Added `gradient_clip_algorithm` argument to Trainer for gradient clipping by value ([#6123](Lightning-AI/pytorch-lightning#6123)). - Added a way to print to terminal without breaking up the progress bar ([#5470](Lightning-AI/pytorch-lightning#5470)) - Added support to checkpoint after training steps in `ModelCheckpoint` callback ([#6146](Lightning-AI/pytorch-lightning#6146)) - Added `checkpoint` parameter to callback's `on_save_checkpoint` hook ([#6072](Lightning-AI/pytorch-lightning#6072)) - Added `RunningStage.SANITY_CHECKING` ([#4945](Lightning-AI/pytorch-lightning#4945)) - Added `TrainerState.{FITTING,VALIDATING,TESTING,PREDICTING,TUNING}` ([#4945](Lightning-AI/pytorch-lightning#4945)) - Added `Trainer.validate()` method to perform one evaluation epoch over the validation set ([#4948](Lightning-AI/pytorch-lightning#4948)) - Added `LightningEnvironment` for Lightning-specific DDP ([#5915](Lightning-AI/pytorch-lightning#5915)) - Added `teardown()` hook to LightningDataModule ([#4673](Lightning-AI/pytorch-lightning#4673)) - Added `auto_insert_metric_name` parameter to `ModelCheckpoint` ([#6277](Lightning-AI/pytorch-lightning#6277)) - Added arg to `self.log` that enables users to give custom names when dealing with multiple dataloaders ([#6274](Lightning-AI/pytorch-lightning#6274)) - Added `teardown` method to `BaseProfiler` to enable subclasses defining post-profiling steps outside of `__del__` ([#6370](Lightning-AI/pytorch-lightning#6370)) - Added `setup` method to `BaseProfiler` to enable subclasses defining pre-profiling steps for every process ([#6633](Lightning-AI/pytorch-lightning#6633)) - Added no return warning to predict ([#6139](Lightning-AI/pytorch-lightning#6139)) - Added `Trainer.predict` config validation ([#6543](Lightning-AI/pytorch-lightning#6543)) - Added `AbstractProfiler` interface ([#6621](Lightning-AI/pytorch-lightning#6621)) - Added support for including module names for forward in the autograd trace of `PyTorchProfiler` ([#6349](Lightning-AI/pytorch-lightning#6349)) - Added support for the PyTorch 1.8.1 autograd profiler ([#6618](Lightning-AI/pytorch-lightning#6618)) - Added `outputs` parameter to callback's `on_validation_epoch_end` & `on_test_epoch_end` hooks ([#6120](Lightning-AI/pytorch-lightning#6120)) - Added `configure_sharded_model` hook ([#6679](Lightning-AI/pytorch-lightning#6679)) - Added support for `precision=64`, enabling training with double precision ([#6595](Lightning-AI/pytorch-lightning#6595)) - Added support for DDP communication hooks ([#6736](Lightning-AI/pytorch-lightning#6736)) - Added `artifact_location` argument to `MLFlowLogger` which will be passed to the `MlflowClient.create_experiment` call ([#6677](Lightning-AI/pytorch-lightning#6677)) - Added `model` parameter to precision plugins' `clip_gradients` signature ([#6764](Lightning-AI/pytorch-lightning#6764)) ### Changed - Renamed `pytorch_lightning.callbacks.swa` to `pytorch_lightning.callbacks.stochastic_weight_avg` ([#6259](Lightning-AI/pytorch-lightning#6259)) - Refactor `RunningStage` and `TrainerState` usage ([#4945](Lightning-AI/pytorch-lightning#4945)) - Changed `trainer.evaluating` to return `True` if validating or testing ([#4945](Lightning-AI/pytorch-lightning#4945)) - Changed `setup()` and `teardown()` stage argument to take any of `{fit,validate,test,predict}` ([#6386](Lightning-AI/pytorch-lightning#6386)) - Changed profilers to save separate report files per state and rank ([#6621](Lightning-AI/pytorch-lightning#6621)) - Changed `PyTorchProfiler` to use `torch.autograd.profiler.record_function` to record functions ([#6349](Lightning-AI/pytorch-lightning#6349)) ### Deprecated - `period` has been deprecated in favor of `every_n_val_epochs` in the `ModelCheckpoint` callback ([#6146](Lightning-AI/pytorch-lightning#6146)) - Deprecated `trainer.running_sanity_check` in favor of `trainer.sanity_checking` ([#4945](Lightning-AI/pytorch-lightning#4945)) - Deprecated `Profiler(output_filename)` in favor of `dirpath` and `filename` ([#6621](Lightning-AI/pytorch-lightning#6621)) - Deprecated `PytorchProfiler(profiled_functions)` in favor of `record_functions` ([#6349](Lightning-AI/pytorch-lightning#6349)) - Deprecated metrics in favor of `torchmetrics` ([#6505](Lightning-AI/pytorch-lightning#6505), [#6530](Lightning-AI/pytorch-lightning#6530), [#6540](Lightning-AI/pytorch-lightning#6540), [#6547](Lightning-AI/pytorch-lightning#6547), [#6515](Lightning-AI/pytorch-lightning#6515), [#6572](Lightning-AI/pytorch-lightning#6572), [#6573](Lightning-AI/pytorch-lightning#6573), [#6584](Lightning-AI/pytorch-lightning#6584), [#6636](Lightning-AI/pytorch-lightning#6636), [#6637](Lightning-AI/pytorch-lightning#6637), [#6649](Lightning-AI/pytorch-lightning#6649), [#6659](Lightning-AI/pytorch-lightning#6659), ) ### Removed - Removed support for passing a bool value to `profiler` argument of Trainer ([#6164](Lightning-AI/pytorch-lightning#6164)) - Removed no return warning from val/test step ([#6139](Lightning-AI/pytorch-lightning#6139)) - Removed passing a `ModelCheckpoint` instance to `Trainer(checkpoint_callback)` ([#6166](Lightning-AI/pytorch-lightning#6166)) - Removed deprecated Trainer argument `enable_pl_optimizer` and `automatic_optimization` ([#6163](Lightning-AI/pytorch-lightning#6163)) - Removed deprecated metrics ([#6161](Lightning-AI/pytorch-lightning#6161)) * from `pytorch_lightning.metrics.functional.classification` removed `to_onehot`, `to_categorical`, `get_num_classes`, `roc`, `multiclass_roc`, `average_precision`, `precision_recall_curve`, `multiclass_precision_recall_curve` * from `pytorch_lightning.metrics.functional.reduction` removed `reduce`, `class_reduce` - Removed deprecated `ModelCheckpoint` arguments `prefix`, `mode="auto"` ([#6162](Lightning-AI/pytorch-lightning#6162)) - Removed `mode='auto'` from `EarlyStopping` ([#6167](Lightning-AI/pytorch-lightning#6167)) - Removed legacy references for magic keys in the `Result` object ([#6016](Lightning-AI/pytorch-lightning#6016)) - Removed deprecated `LightningModule` `hparams` setter ([#6207](Lightning-AI/pytorch-lightning#6207)) - Removed legacy code to log or include metrics in the progress bar by returning them in a dict with the `"log"/"progress_bar"` magic keys. Use `self.log` instead ([#6734](Lightning-AI/pytorch-lightning#6734)) - Removed `optimizer_idx` argument from `training_step` in manual optimization ([#6093](Lightning-AI/pytorch-lightning#6093)) ### Fixed - Set better defaults for `rank_zero_only.rank` when training is launched with SLURM and torchelastic ([#6802](Lightning-AI/pytorch-lightning#6802)) - Made the `Plugin.reduce` method more consistent across all Plugins to reflect a mean-reduction by default ([#6011](Lightning-AI/pytorch-lightning#6011)) - Move lightning module to correct device type when using LightningDistributedWrapper ([#6070](Lightning-AI/pytorch-lightning#6070)) - Do not print top-k verbose log with `ModelCheckpoint(monitor=None)` ([#6109](Lightning-AI/pytorch-lightning#6109)) - Fixed csv extension check ([#6436](Lightning-AI/pytorch-lightning#6436)) - Fixed `ModelCheckpoint(monitor=None, save_last=True)` not saving checkpoints ([#6136](Lightning-AI/pytorch-lightning#6136)) - Fixed `ModelCheckpoint(save_top_k=0, save_last=True)` not saving the `last` checkpoint ([#6136](Lightning-AI/pytorch-lightning#6136)) - Fixed `.teardown(stage='fit')` getting called during `trainer.test` ([#6386](Lightning-AI/pytorch-lightning#6386)) - Fixed `.on_fit_{start,end}()` getting called during `trainer.test` ([#6386](Lightning-AI/pytorch-lightning#6386)) - Fixed LightningModule `all_gather` on cpu tensors ([#6416](Lightning-AI/pytorch-lightning#6416)) - Fixed torch distributed not available in setup hook for DDP ([#6506](Lightning-AI/pytorch-lightning#6506)) - Fixed `EarlyStopping` logic when `min_epochs` or `min_steps` requirement is not met ([#6705](Lightning-AI/pytorch-lightning#6705)) ## [1.2.7] - 2021-04-06 ### Fixed - Fixed resolve a bug with omegaconf and xm.save ([#6741](Lightning-AI/pytorch-lightning#6741)) - Fixed an issue with IterableDataset when __len__ is not defined ([#6828](Lightning-AI/pytorch-lightning#6828)) - Sanitize None params during pruning ([#6836](Lightning-AI/pytorch-lightning#6836)) - Enforce an epoch scheduler interval when using SWA ([#6588](Lightning-AI/pytorch-lightning#6588)) - Fixed TPU Colab hang issue, post training ([#6816](Lightning-AI/pytorch-lightning#6816)) - Fixed a bug where `TensorBoardLogger` would give a warning and not log correctly to a symbolic link `save_dir` ([#6730](Lightning-AI/pytorch-lightning#6730)) ## [1.2.6] - 2021-03-30 ### Changed - Changed the behavior of `on_epoch_start` to run at the beginning of validation & test epoch ([#6498](Lightning-AI/pytorch-lightning#6498)) ### Removed - Removed legacy code to include `step` dictionary returns in `callback_metrics`. Use `self.log_dict` instead. ([#6682](Lightning-AI/pytorch-lightning#6682)) ### Fixed - Fixed `DummyLogger.log_hyperparams` raising a `TypeError` when running with `fast_dev_run=True` ([#6398](Lightning-AI/pytorch-lightning#6398)) - Fixed error on TPUs when there was no `ModelCheckpoint` ([#6654](Lightning-AI/pytorch-lightning#6654)) - Fixed `trainer.test` freeze on TPUs ([#6654](Lightning-AI/pytorch-lightning#6654)) - Fixed a bug where gradients were disabled after calling `Trainer.predict` ([#6657](Lightning-AI/pytorch-lightning#6657)) - Fixed bug where no TPUs were detected in a TPU pod env ([#6719](Lightning-AI/pytorch-lightning#6719)) ## [1.2.5] - 2021-03-23 ### Changed - Update Gradient Clipping for the TPU Accelerator ([#6576](Lightning-AI/pytorch-lightning#6576)) - Refactored setup for typing friendly ([#6590](Lightning-AI/pytorch-lightning#6590)) ### Fixed - Fixed a bug where `all_gather` would not work correctly with `tpu_cores=8` ([#6587](Lightning-AI/pytorch-lightning#6587)) - Fixed comparing required versions ([#6434](Lightning-AI/pytorch-lightning#6434)) - Fixed duplicate logs appearing in console when using the python logging module ([#6275](Lightning-AI/pytorch-lightning#6275)) - Added Autocast in validation, test and predict modes for Native AMP ([#6565](Lightning-AI/pytorch-lightning#6565)) Reviewed By: shuyingsunshine21 Differential Revision: D27528929 fbshipit-source-id: 311c88f71461c2c79bbf185e28d7a6d683ccc26f
What does this PR do?
Fixes #6390
Before submitting
PR review
Anyone in the community is free to review the PR once the tests have passed.
Before you start reviewing make sure you have read Review guidelines. In short, see the following bullet-list:
Did you have fun?
Make sure you had fun coding 🙃