Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix checkpoint callback & Trainer.test(_) issue for TPUs #6654

Merged
merged 11 commits into from
Mar 25, 2021

Conversation

kaushikb11
Copy link
Contributor

@kaushikb11 kaushikb11 commented Mar 23, 2021

What does this PR do?

Fix checkpoint callback issue for TPUs when set False & `trainer.test(..).
Fixes #6230

Before submitting

  • Was this discussed/approved via a GitHub issue? (not for typos and docs)
  • Did you read the contributor guideline, Pull Request section?
  • Did you make sure your PR does only one thing, instead of bundling different changes together?
  • Did you make sure to update the documentation with your changes? (if necessary)
  • Did you write any new necessary tests? (not for typos and docs)
  • Did you verify new and existing tests pass locally with your changes?
  • Did you update the CHANGELOG? (not for typos, docs, test updates, or internal minor changes/refactorings)

PR review

Anyone in the community is free to review the PR once the tests have passed.
Before you start reviewing make sure you have read Review guidelines. In short, see the following bullet-list:

  • Is this pull request ready for review? (if not, please submit in draft mode)
  • Check that all items from Before submitting are resolved
  • Make sure the title is self-explanatory and the description concisely explains the PR
  • Add labels and milestones (and optionally projects) to the PR so it can be classified

Did you have fun?

Make sure you had fun coding 🙃

tests/models/test_tpu.py Outdated Show resolved Hide resolved
tests/models/test_tpu.py Show resolved Hide resolved
CHANGELOG.md Outdated Show resolved Hide resolved
Comment on lines +133 to +134
checkpoint_callback = self.lightning_module.trainer.checkpoint_callback
best_model_path = checkpoint_callback.best_model_path if checkpoint_callback else None
Copy link
Contributor

@ananthsub ananthsub Mar 24, 2021

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

what happens if there are multiple checkpoint callbacks attached? should we save once per path?

@awaelchli @carmocca this is gonna be amplified if people are tracking multiple versions of "best model paths" at the same time in an example like this

trainer = Trainer(...., callbacks=[checkpoint1, checkpoint2])
trainer.fit(module)
trainer.test()  <--- what checkpoint path path is used for running this?

should this raise an error due to ambiguity?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think I'd rather use the first best path and log the path used when running test

Copy link
Contributor

@tchaton tchaton left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM !

tests/models/test_tpu.py Show resolved Hide resolved
@kaushikb11 kaushikb11 changed the title Fix checkpoint callback issue for TPUs Fix checkpoint callback & Trainer.test(_) issue for TPUs Mar 24, 2021
@mergify mergify bot removed the has conflicts label Mar 24, 2021
Copy link
Contributor

@SeanNaren SeanNaren left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Nice! on a side note how far are we from enabling TPU tests again?

@kaushikb11
Copy link
Contributor Author

@SeanNaren Thanks for bringing it up! We could keep a look on it for next couple of days, I have seen instances when the TPU Pods used to get killed mid testing. Afk, will create an Issue and track it.

@kaushikb11 kaushikb11 added the bug Something isn't working label Mar 24, 2021
Copy link
Member

@Borda Borda left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

have you tested it locally as TPU is put for now...?

pytorch_lightning/plugins/training_type/tpu_spawn.py Outdated Show resolved Hide resolved
pytorch_lightning/plugins/training_type/tpu_spawn.py Outdated Show resolved Hide resolved
@kaushikb11
Copy link
Contributor Author

@Borda
Screen Shot 2021-03-25 at 1 53 13 PM

All tests are passing. Had to do a tweek. Will investigate it soon.

@codecov
Copy link

codecov bot commented Mar 25, 2021

Codecov Report

Merging #6654 (4c69b62) into master (d471fa3) will decrease coverage by 5%.
The diff coverage is 29%.

@@           Coverage Diff           @@
##           master   #6654    +/-   ##
=======================================
- Coverage      91%     86%    -5%     
=======================================
  Files         192     192            
  Lines       12227   12373   +146     
=======================================
- Hits        11111   10654   -457     
- Misses       1116    1719   +603     

tests/models/test_tpu.py Outdated Show resolved Hide resolved
@Borda Borda enabled auto-merge (squash) March 25, 2021 09:55
@Borda Borda disabled auto-merge March 25, 2021 10:27
@Borda Borda enabled auto-merge (squash) March 25, 2021 10:27
@Borda Borda merged commit 2cbdc01 into Lightning-AI:master Mar 25, 2021
@carmocca carmocca mentioned this pull request Mar 29, 2021
carmocca pushed a commit that referenced this pull request Mar 29, 2021
* Fix checkpoint callback issue for TPUs

* update changelog

* add barrier

* apply code suggestions

* update trainer test

* remove spaces

* fix tpu tests

* Apply suggestions from code review

* add comment

Co-authored-by: Jirka Borovec <[email protected]>
Borda added a commit that referenced this pull request Mar 30, 2021
* Fix checkpoint callback issue for TPUs

* update changelog

* add barrier

* apply code suggestions

* update trainer test

* remove spaces

* fix tpu tests

* Apply suggestions from code review

* add comment

Co-authored-by: Jirka Borovec <[email protected]>
lexierule pushed a commit that referenced this pull request Mar 30, 2021
* Fix checkpoint callback issue for TPUs

* update changelog

* add barrier

* apply code suggestions

* update trainer test

* remove spaces

* fix tpu tests

* Apply suggestions from code review

* add comment

Co-authored-by: Jirka Borovec <[email protected]>
facebook-github-bot pushed a commit to facebookresearch/d2go that referenced this pull request Apr 14, 2021
…ter) to github/third-party/PyTorchLightning/pytorch-lightning

Summary:
### New commit log messages
## [UnReleased] - 2021-MM-DD

### Added

- Added more explicit exception message when trying to execute `trainer.test()` or `trainer.validate()` with `fast_dev_run=True` ([#6667](Lightning-AI/pytorch-lightning#6667))

- Added `LightningCLI` class to provide simple reproducibility with minimum boilerplate training cli. ([#4492](Lightning-AI/pytorch-lightning#4492))

- Trigger warning when non-metric logged value with multi processes hasn't been reduced ([#6417](Lightning-AI/pytorch-lightning#6417))

- Added `gradient_clip_algorithm` argument to Trainer for gradient clipping by value ([#6123](Lightning-AI/pytorch-lightning#6123)).

- Added a way to print to terminal without breaking up the progress bar ([#5470](Lightning-AI/pytorch-lightning#5470))

- Added support to checkpoint after training steps in `ModelCheckpoint` callback ([#6146](Lightning-AI/pytorch-lightning#6146))

- Added `checkpoint` parameter to callback's `on_save_checkpoint` hook ([#6072](Lightning-AI/pytorch-lightning#6072))

- Added `RunningStage.SANITY_CHECKING` ([#4945](Lightning-AI/pytorch-lightning#4945))

- Added `TrainerState.{FITTING,VALIDATING,TESTING,PREDICTING,TUNING}` ([#4945](Lightning-AI/pytorch-lightning#4945))

- Added `Trainer.validate()` method to perform one evaluation epoch over the validation set ([#4948](Lightning-AI/pytorch-lightning#4948))

- Added `LightningEnvironment` for Lightning-specific DDP ([#5915](Lightning-AI/pytorch-lightning#5915))

- Added `teardown()` hook to LightningDataModule ([#4673](Lightning-AI/pytorch-lightning#4673))

- Added `auto_insert_metric_name` parameter to `ModelCheckpoint` ([#6277](Lightning-AI/pytorch-lightning#6277))

- Added arg to `self.log` that enables users to give custom names when dealing with multiple dataloaders ([#6274](Lightning-AI/pytorch-lightning#6274))

- Added `teardown` method to `BaseProfiler` to enable subclasses defining post-profiling steps outside of `__del__` ([#6370](Lightning-AI/pytorch-lightning#6370))

- Added `setup` method to `BaseProfiler` to enable subclasses defining pre-profiling steps for every process ([#6633](Lightning-AI/pytorch-lightning#6633))

- Added no return warning to predict ([#6139](Lightning-AI/pytorch-lightning#6139))

- Added `Trainer.predict` config validation ([#6543](Lightning-AI/pytorch-lightning#6543))

- Added `AbstractProfiler` interface ([#6621](Lightning-AI/pytorch-lightning#6621))

- Added support for including module names for forward in the autograd trace of `PyTorchProfiler` ([#6349](Lightning-AI/pytorch-lightning#6349))

- Added support for the PyTorch 1.8.1 autograd profiler ([#6618](Lightning-AI/pytorch-lightning#6618))

- Added `outputs` parameter to callback's `on_validation_epoch_end` & `on_test_epoch_end` hooks ([#6120](Lightning-AI/pytorch-lightning#6120))

- Added `configure_sharded_model` hook ([#6679](Lightning-AI/pytorch-lightning#6679))

- Added support for `precision=64`, enabling training with double precision ([#6595](Lightning-AI/pytorch-lightning#6595))

- Added support for DDP communication hooks ([#6736](Lightning-AI/pytorch-lightning#6736))

- Added `artifact_location` argument to `MLFlowLogger` which will be passed to the `MlflowClient.create_experiment` call ([#6677](Lightning-AI/pytorch-lightning#6677))

- Added `model` parameter to precision plugins' `clip_gradients` signature ([#6764](Lightning-AI/pytorch-lightning#6764))

### Changed

- Renamed `pytorch_lightning.callbacks.swa` to `pytorch_lightning.callbacks.stochastic_weight_avg` ([#6259](Lightning-AI/pytorch-lightning#6259))

- Refactor `RunningStage` and `TrainerState` usage ([#4945](Lightning-AI/pytorch-lightning#4945))

- Changed `trainer.evaluating` to return `True` if validating or testing ([#4945](Lightning-AI/pytorch-lightning#4945))

- Changed `setup()` and `teardown()` stage argument to take any of `{fit,validate,test,predict}` ([#6386](Lightning-AI/pytorch-lightning#6386))

- Changed profilers to save separate report files per state and rank ([#6621](Lightning-AI/pytorch-lightning#6621))

- Changed `PyTorchProfiler` to use `torch.autograd.profiler.record_function` to record functions ([#6349](Lightning-AI/pytorch-lightning#6349))

### Deprecated

- `period` has been deprecated in favor of `every_n_val_epochs` in the `ModelCheckpoint` callback ([#6146](Lightning-AI/pytorch-lightning#6146))

- Deprecated `trainer.running_sanity_check` in favor of `trainer.sanity_checking` ([#4945](Lightning-AI/pytorch-lightning#4945))

- Deprecated `Profiler(output_filename)` in favor of `dirpath` and `filename` ([#6621](Lightning-AI/pytorch-lightning#6621))

- Deprecated `PytorchProfiler(profiled_functions)` in favor of `record_functions` ([#6349](Lightning-AI/pytorch-lightning#6349))

- Deprecated metrics in favor of `torchmetrics` ([#6505](Lightning-AI/pytorch-lightning#6505),
    [#6530](Lightning-AI/pytorch-lightning#6530),
    [#6540](Lightning-AI/pytorch-lightning#6540),
    [#6547](Lightning-AI/pytorch-lightning#6547),
    [#6515](Lightning-AI/pytorch-lightning#6515),
    [#6572](Lightning-AI/pytorch-lightning#6572),
    [#6573](Lightning-AI/pytorch-lightning#6573),
    [#6584](Lightning-AI/pytorch-lightning#6584),
    [#6636](Lightning-AI/pytorch-lightning#6636),
    [#6637](Lightning-AI/pytorch-lightning#6637),
    [#6649](Lightning-AI/pytorch-lightning#6649),
    [#6659](Lightning-AI/pytorch-lightning#6659),
)

### Removed

- Removed support for passing a bool value to `profiler` argument of Trainer ([#6164](Lightning-AI/pytorch-lightning#6164))

- Removed no return warning from val/test step ([#6139](Lightning-AI/pytorch-lightning#6139))

- Removed passing a `ModelCheckpoint` instance to `Trainer(checkpoint_callback)` ([#6166](Lightning-AI/pytorch-lightning#6166))

- Removed deprecated Trainer argument `enable_pl_optimizer` and `automatic_optimization` ([#6163](Lightning-AI/pytorch-lightning#6163))

- Removed deprecated metrics ([#6161](Lightning-AI/pytorch-lightning#6161))
    * from `pytorch_lightning.metrics.functional.classification` removed `to_onehot`, `to_categorical`, `get_num_classes`, `roc`, `multiclass_roc`, `average_precision`, `precision_recall_curve`, `multiclass_precision_recall_curve`
    * from `pytorch_lightning.metrics.functional.reduction` removed `reduce`, `class_reduce`

- Removed deprecated `ModelCheckpoint` arguments `prefix`, `mode="auto"` ([#6162](Lightning-AI/pytorch-lightning#6162))

- Removed `mode='auto'` from `EarlyStopping` ([#6167](Lightning-AI/pytorch-lightning#6167))

- Removed legacy references for magic keys in the `Result` object ([#6016](Lightning-AI/pytorch-lightning#6016))

- Removed deprecated `LightningModule` `hparams` setter ([#6207](Lightning-AI/pytorch-lightning#6207))

- Removed legacy code to log or include metrics in the progress bar by returning them in a dict with the `"log"/"progress_bar"` magic keys. Use `self.log` instead ([#6734](Lightning-AI/pytorch-lightning#6734))

- Removed `optimizer_idx` argument from `training_step` in manual optimization ([#6093](Lightning-AI/pytorch-lightning#6093))

### Fixed

- Set better defaults for `rank_zero_only.rank` when training is launched with SLURM and torchelastic ([#6802](Lightning-AI/pytorch-lightning#6802))

- Made the `Plugin.reduce` method more consistent across all Plugins to reflect a mean-reduction by default ([#6011](Lightning-AI/pytorch-lightning#6011))

- Move lightning module to correct device type when using LightningDistributedWrapper ([#6070](Lightning-AI/pytorch-lightning#6070))

- Do not print top-k verbose log with `ModelCheckpoint(monitor=None)` ([#6109](Lightning-AI/pytorch-lightning#6109))

- Fixed csv extension check ([#6436](Lightning-AI/pytorch-lightning#6436))

- Fixed `ModelCheckpoint(monitor=None, save_last=True)` not saving checkpoints ([#6136](Lightning-AI/pytorch-lightning#6136))

- Fixed `ModelCheckpoint(save_top_k=0, save_last=True)` not saving the `last` checkpoint ([#6136](Lightning-AI/pytorch-lightning#6136))

- Fixed `.teardown(stage='fit')` getting called during `trainer.test` ([#6386](Lightning-AI/pytorch-lightning#6386))

- Fixed `.on_fit_{start,end}()` getting called during `trainer.test` ([#6386](Lightning-AI/pytorch-lightning#6386))

- Fixed LightningModule `all_gather` on cpu tensors ([#6416](Lightning-AI/pytorch-lightning#6416))

- Fixed torch distributed not available in setup hook for DDP ([#6506](Lightning-AI/pytorch-lightning#6506))

- Fixed `EarlyStopping` logic when `min_epochs` or `min_steps` requirement is not met ([#6705](Lightning-AI/pytorch-lightning#6705))

## [1.2.7] - 2021-04-06

### Fixed

- Fixed resolve a bug with omegaconf and xm.save ([#6741](Lightning-AI/pytorch-lightning#6741))
- Fixed an issue with IterableDataset when __len__ is not defined ([#6828](Lightning-AI/pytorch-lightning#6828))
- Sanitize None params during pruning ([#6836](Lightning-AI/pytorch-lightning#6836))
- Enforce an epoch scheduler interval when using SWA ([#6588](Lightning-AI/pytorch-lightning#6588))
- Fixed TPU Colab hang issue, post training ([#6816](Lightning-AI/pytorch-lightning#6816))
- Fixed a bug where `TensorBoardLogger` would give a warning and not log correctly to a symbolic link `save_dir` ([#6730](Lightning-AI/pytorch-lightning#6730))

## [1.2.6] - 2021-03-30

### Changed

- Changed the behavior of `on_epoch_start` to run at the beginning of validation & test epoch ([#6498](Lightning-AI/pytorch-lightning#6498))

### Removed

- Removed legacy code to include `step` dictionary returns in `callback_metrics`. Use `self.log_dict` instead. ([#6682](Lightning-AI/pytorch-lightning#6682))

### Fixed

- Fixed `DummyLogger.log_hyperparams` raising a `TypeError` when running with `fast_dev_run=True` ([#6398](Lightning-AI/pytorch-lightning#6398))
- Fixed error on TPUs when there was no `ModelCheckpoint` ([#6654](Lightning-AI/pytorch-lightning#6654))
- Fixed `trainer.test` freeze on TPUs ([#6654](Lightning-AI/pytorch-lightning#6654))
- Fixed a bug where gradients were disabled after calling `Trainer.predict` ([#6657](Lightning-AI/pytorch-lightning#6657))
- Fixed bug where no TPUs were detected in a TPU pod env ([#6719](Lightning-AI/pytorch-lightning#6719))

## [1.2.5] - 2021-03-23

### Changed

- Update Gradient Clipping for the TPU Accelerator ([#6576](Lightning-AI/pytorch-lightning#6576))
- Refactored setup for typing friendly ([#6590](Lightning-AI/pytorch-lightning#6590))

### Fixed

- Fixed a bug where `all_gather` would not work correctly with `tpu_cores=8` ([#6587](Lightning-AI/pytorch-lightning#6587))
- Fixed comparing required versions ([#6434](Lightning-AI/pytorch-lightning#6434))
- Fixed duplicate logs appearing in console when using the python logging module ([#6275](Lightning-AI/pytorch-lightning#6275))
- Added Autocast in validation, test and predict modes for Native AMP ([#6565](Lightning-AI/pytorch-lightning#6565))

Reviewed By: shuyingsunshine21

Differential Revision: D27528929

fbshipit-source-id: 311c88f71461c2c79bbf185e28d7a6d683ccc26f
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

Successfully merging this pull request may close these issues.

TPU: Crashes using trainer.test()
6 participants