Skip to content

Conversation

@GuoPhilipse
Copy link
Owner

sync

huaxingao and others added 15 commits June 26, 2020 12:55
### What changes were proposed in this pull request?
Adding support to Association Rules in Spark ml.fpm.

### Why are the changes needed?
Support is an indication of how frequently the itemset of an association rule appears in the database and suggests if the rules are generally applicable to the dateset. Refer to [wiki](https://en.wikipedia.org/wiki/Association_rule_learning#Support) for more details.

### Does this PR introduce _any_ user-facing change?
Yes. Associate Rules now have support measure

### How was this patch tested?
existing and new unit test

Closes #28903 from huaxingao/fpm.

Authored-by: Huaxin Gao <[email protected]>
Signed-off-by: Sean Owen <[email protected]>
### What changes were proposed in this pull request?
Add training summary for LinearSVCModel......

### Why are the changes needed?
 so that user can get the training process status, such as loss value of each iteration and total iteration number.

### Does this PR introduce _any_ user-facing change?
Yes
```LinearSVCModel.summary```
```LinearSVCModel.evaluate```

### How was this patch tested?
new tests

Closes #28884 from huaxingao/svc_summary.

Authored-by: Huaxin Gao <[email protected]>
Signed-off-by: Sean Owen <[email protected]>
### What changes were proposed in this pull request?

Add American timezone during timestamp_seconds doctest

### Why are the changes needed?

`timestamp_seconds` doctest in `functions.py` used default timezone to get expected result
For example:

```python
>>> time_df = spark.createDataFrame([(1230219000,)], ['unix_time'])
>>> time_df.select(timestamp_seconds(time_df.unix_time).alias('ts')).collect()
[Row(ts=datetime.datetime(2008, 12, 25, 7, 30))]
```

But when we have a non-american timezone, the test case will get different test result.

For example, when we set current timezone as `Asia/Shanghai`, the test result will be

```
[Row(ts=datetime.datetime(2008, 12, 25, 23, 30))]
```

So no matter where we run the test case ,we will always get the expected permanent result if we set the timezone on one specific area.

### Does this PR introduce _any_ user-facing change?

No

### How was this patch tested?

Unit test

Closes #28932 from GuoPhilipse/SPARK-32088-fix-timezone-issue.

Lead-authored-by: GuoPhilipse <[email protected]>
Co-authored-by: GuoPhilipse <[email protected]>
Signed-off-by: Dongjoon Hyun <[email protected]>
…tion

### What changes were proposed in this pull request?

The 3rd link in `IBM Cloud Object Storage connector for Apache Spark` is broken. The PR removes this link.

### Why are the changes needed?

broken link

### Does this PR introduce _any_ user-facing change?

yes, the broken link is removed from the doc.

### How was this patch tested?

doc generation passes successfully as before

Closes #28927 from guykhazma/spark32099.

Authored-by: Guy Khazma <[email protected]>
Signed-off-by: Dongjoon Hyun <[email protected]>
…completeAndCheckAnswer and using completeNextStageWithFetchFailure

### What changes were proposed in this pull request?
**First**
`DAGSchedulerSuite` provides `completeNextStageWithFetchFailure` to make all tasks in non first stage occur `FetchFailed`.
But many test case uses complete directly as follows:
```scala
 complete(taskSets(1), Seq(
     (FetchFailed(makeBlockManagerId("hostA"),
        shuffleDep1.shuffleId, 0L, 0, 0, "ignored"), null)))
```
We need to reuse `completeNextStageWithFetchFailure`.

**Second**
`DAGSchedulerSuite` also check the results show below:
```scala
complete(taskSets(0), Seq((Success, 42)))
assert(results === Map(0 -> 42))
```
We can extract it as a generic method of `checkAnswer`.

### Why are the changes needed?
Reuse `completeNextStageWithFetchFailure`

### Does this PR introduce _any_ user-facing change?
'No'.

### How was this patch tested?
Jenkins test

Closes #28866 from beliefer/reuse-completeNextStageWithFetchFailure.

Authored-by: gengjiaan <[email protected]>
Signed-off-by: Dongjoon Hyun <[email protected]>
### What changes were proposed in this pull request?

According to the dev mailing list discussion, this PR aims to switch the default Apache Hadoop dependency from 2.7.4 to 3.2.0 for Apache Spark 3.1.0 on December 2020.

| Item | Default Hadoop Dependency |
|------|-----------------------------|
| Apache Spark Website | 3.2.0 |
| Apache Download Site | 3.2.0 |
| Apache Snapshot | 3.2.0 |
| Maven Central | 3.2.0 |
| PyPI | 2.7.4 (We will switch later) |
| CRAN | 2.7.4 (We will switch later) |
| Homebrew | 3.2.0 (already) |

In Apache Spark 3.0.0 release, we focused on the other features. This PR targets for [Apache Spark 3.1.0 scheduled on December 2020](https://spark.apache.org/versioning-policy.html).

### Why are the changes needed?

Apache Hadoop 3.2 has many fixes and new cloud-friendly features.

**Reference**
- 2017-08-04: https://hadoop.apache.org/release/2.7.4.html
- 2019-01-16: https://hadoop.apache.org/release/3.2.0.html

### Does this PR introduce _any_ user-facing change?

Since the default Hadoop dependency changes, the users will get a better support in a cloud environment.

### How was this patch tested?

Pass the Jenkins.

Closes #28897 from dongjoon-hyun/SPARK-32058.

Authored-by: Dongjoon Hyun <[email protected]>
Signed-off-by: Dongjoon Hyun <[email protected]>
### What changes were proposed in this pull request?
Add benchmarks for interval constructor `make_interval` and measure perf of 4 cases:
1. Constant (year, month)
2. Constant (week, day)
3. Constant (hour, minute, second, second fraction)
4. All fields are NOT constant.

The benchmark results are generated in the environment:

| Item | Description |
| ---- | ----|
| Region | us-west-2 (Oregon) |
| Instance | r3.xlarge |
| AMI | ubuntu/images/hvm-ssd/ubuntu-bionic-18.04-amd64-server-20190722.1 (ami-06f2f779464715dc5) |
| Java | OpenJDK 64-Bit Server VM 1.8.0_252 and OpenJDK 64-Bit Server VM 11.0.7+10 |

### Why are the changes needed?
To have a base line for future perf improvements of `make_interval`, and to prevent perf regressions in the future.

### Does this PR introduce _any_ user-facing change?
No

### How was this patch tested?
By running `IntervalBenchmark` via:
```
$ SPARK_GENERATE_BENCHMARK_FILES=1 build/sbt "sql/test:runMain org.apache.spark.sql.execution.benchmark.IntervalBenchmark"
```

Closes #28905 from MaxGekk/benchmark-make_interval.

Authored-by: Max Gekk <[email protected]>
Signed-off-by: Dongjoon Hyun <[email protected]>
### What changes were proposed in this pull request?
Bug fix for overflow case in `UTF8String.substringSQL`.

### Why are the changes needed?
SQL query `SELECT SUBSTRING("abc", -1207959552, -1207959552)` incorrectly returns` "abc"` against expected output of `""`. For query `SUBSTRING("abc", -100, -100)`, we'll get the right output of `""`.

### Does this PR introduce _any_ user-facing change?
Yes, bug fix for the overflow case.

### How was this patch tested?
New UT.

Closes #28937 from xuanyuanking/SPARK-32115.

Authored-by: Yuanjian Li <[email protected]>
Signed-off-by: Dongjoon Hyun <[email protected]>
…gs from old Spark versions

### What changes were proposed in this pull request?
Fix bug of exception when parse event log of fetch failed task end reason without `Map Index`

### Why are the changes needed?
When Spark history server read event log produced by older version of spark 2.4 (which don't have `Map Index` field), parsing of TaskEndReason will fail. This will cause TaskEnd event being ignored.

### Does this PR introduce _any_ user-facing change?
No

### How was this patch tested?
JsonProtocolSuite.test("FetchFailed Map Index backwards compatibility")

Closes #28941 from warrenzhu25/shs-task.

Authored-by: Warren Zhu <[email protected]>
Signed-off-by: Dongjoon Hyun <[email protected]>
### What changes were proposed in this pull request?

The `optimizedPlan` in IncrementalExecution should also be scoped in `withActive`.

### Why are the changes needed?

Follow-up of SPARK-30798 for the Streaming side.

### Does this PR introduce _any_ user-facing change?
No.

### How was this patch tested?
Existing UT.

Closes #28936 from xuanyuanking/SPARK-30798-follow.

Authored-by: Yuanjian Li <[email protected]>
Signed-off-by: Dongjoon Hyun <[email protected]>
…etrical

### What changes were proposed in this pull request?

This PR fix `UserDefinedType.equal()` by comparing the UDT class instead of checking `acceptsType()`.

### Why are the changes needed?

It's weird that equality comparison between two UDT types can have different result by switching the order:

```scala
// ExampleSubTypeUDT.userClass is a subclass of ExampleBaseTypeUDT.userClass
val udt1 = new ExampleBaseTypeUDT
val udt2 = new ExampleSubTypeUDT
println(udt1 == udt2) // true
println(udt2 == udt1) // false
```

### Does this PR introduce _any_ user-facing change?

Yes.

Before:
```scala
// ExampleSubTypeUDT.userClass is a subclass of ExampleBaseTypeUDT.userClass
val udt1 = new ExampleBaseTypeUDT
val udt2 = new ExampleSubTypeUDT
println(udt1 == udt2) // true
println(udt2 == udt1) // false
```

After:
```scala
// ExampleSubTypeUDT.userClass is a subclass of ExampleBaseTypeUDT.userClass
val udt1 = new ExampleBaseTypeUDT
val udt2 = new ExampleSubTypeUDT
println(udt1 == udt2) // false
println(udt2 == udt1) // false
```

### How was this patch tested?

Added a unit test.

Closes #28923 from Ngone51/fix-udt-equal.

Authored-by: yi.wu <[email protected]>
Signed-off-by: Dongjoon Hyun <[email protected]>
…ouble normalization

### What changes were proposed in this pull request?

This is a followup of https://github.com/apache/spark/pull/28876/files

This PR proposes to use the name of the original expression, as the alias name of the normalization expression.

### Why are the changes needed?

make the query plan looks pretty when EXPLAIN.

### Does this PR introduce _any_ user-facing change?

No

### How was this patch tested?

manually explain the query

Closes #28919 from cloud-fan/follow.

Authored-by: Wenchen Fan <[email protected]>
Signed-off-by: Dongjoon Hyun <[email protected]>
… when AQE is enabled

### What changes were proposed in this pull request?

This patch proposes to coalesce partitions for repartition by expressions without specifying number of partitions, when AQE is enabled.

### Why are the changes needed?

When repartition by some partition expressions, users can specify number of partitions or not. If  the number of partitions is specified, we should not coalesce partitions because it breaks user expectation. But if without specifying number of partitions, AQE should be able to coalesce partitions as other shuffling.

### Does this PR introduce _any_ user-facing change?

Yes. After this change, if users don't specify the number of partitions when repartitioning data by expressions, AQE will coalesce partitions.

### How was this patch tested?

Added unit test.

Closes #28900 from viirya/SPARK-32056.

Authored-by: Liang-Chi Hsieh <[email protected]>
Signed-off-by: Wenchen Fan <[email protected]>
…ffleManager

### What changes were proposed in this pull request?

This PR tries to unify the method `getReader` and `getReaderForRange` in `ShuffleManager`.

### Why are the changes needed?

Reduce the duplicate codes, simplify the implementation, and for better maintenance.

### Does this PR introduce _any_ user-facing change?

No.

### How was this patch tested?

Covered by existing tests.

Closes #28895 from Ngone51/unify-getreader.

Authored-by: yi.wu <[email protected]>
Signed-off-by: Wenchen Fan <[email protected]>
This is a followup of #28861 :
1. sort the names by Github ID, suggested by #28861 (review)
2. add more full names collected in #28861
3. The duplicated entry of `linbojin` is removed.
4. Name format is normalized to First Last name style.

Closes #28891 from cloud-fan/update.

Authored-by: Wenchen Fan <[email protected]>
Signed-off-by: Wenchen Fan <[email protected]>
@GuoPhilipse GuoPhilipse merged commit 596b842 into GuoPhilipse:master Jun 29, 2020
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

10 participants