-
Notifications
You must be signed in to change notification settings - Fork 477
chore(profiling): improve typing #15796
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
22ea28e to
fc07442
Compare
Codeowners resolved as |
Performance SLOsComparing candidate kowalski/chore-profiling-improve-typing-2 (fc07442) with baseline main (240abfb) 📈 Performance Regressions (3 suites)📈 iastaspects - 118/118✅ add_aspectTime: ✅ 17.942µs (SLO: <20.000µs 📉 -10.3%) vs baseline: 📈 +21.0% Memory: ✅ 42.566MB (SLO: <43.250MB 🟡 -1.6%) vs baseline: +4.8% ✅ add_inplace_aspectTime: ✅ 14.834µs (SLO: <20.000µs 📉 -25.8%) vs baseline: -0.9% Memory: ✅ 42.605MB (SLO: <43.250MB 🟡 -1.5%) vs baseline: +4.9% ✅ add_inplace_noaspectTime: ✅ 0.338µs (SLO: <10.000µs 📉 -96.6%) vs baseline: +0.7% Memory: ✅ 42.546MB (SLO: <43.500MB -2.2%) vs baseline: +4.6% ✅ add_noaspectTime: ✅ 0.548µs (SLO: <10.000µs 📉 -94.5%) vs baseline: +0.6% Memory: ✅ 42.526MB (SLO: <43.500MB -2.2%) vs baseline: +4.8% ✅ bytearray_aspectTime: ✅ 18.034µs (SLO: <30.000µs 📉 -39.9%) vs baseline: +0.1% Memory: ✅ 42.546MB (SLO: <43.500MB -2.2%) vs baseline: +4.8% ✅ bytearray_extend_aspectTime: ✅ 24.033µs (SLO: <30.000µs 📉 -19.9%) vs baseline: +0.6% Memory: ✅ 42.566MB (SLO: <43.500MB -2.1%) vs baseline: +4.7% ✅ bytearray_extend_noaspectTime: ✅ 2.747µs (SLO: <10.000µs 📉 -72.5%) vs baseline: -1.3% Memory: ✅ 42.585MB (SLO: <43.500MB -2.1%) vs baseline: +5.0% ✅ bytearray_noaspectTime: ✅ 1.472µs (SLO: <10.000µs 📉 -85.3%) vs baseline: ~same Memory: ✅ 42.566MB (SLO: <43.500MB -2.1%) vs baseline: +4.6% ✅ bytes_aspectTime: ✅ 16.599µs (SLO: <20.000µs 📉 -17.0%) vs baseline: +0.5% Memory: ✅ 42.526MB (SLO: <43.500MB -2.2%) vs baseline: +4.8% ✅ bytes_noaspectTime: ✅ 1.413µs (SLO: <10.000µs 📉 -85.9%) vs baseline: -1.0% Memory: ✅ 42.585MB (SLO: <43.500MB -2.1%) vs baseline: +4.9% ✅ bytesio_aspectTime: ✅ 55.468µs (SLO: <70.000µs 📉 -20.8%) vs baseline: -0.4% Memory: ✅ 42.546MB (SLO: <43.500MB -2.2%) vs baseline: +4.9% ✅ bytesio_noaspectTime: ✅ 3.275µs (SLO: <10.000µs 📉 -67.3%) vs baseline: +0.5% Memory: ✅ 42.585MB (SLO: <43.500MB -2.1%) vs baseline: +5.0% ✅ capitalize_aspectTime: ✅ 14.682µs (SLO: <20.000µs 📉 -26.6%) vs baseline: +0.1% Memory: ✅ 42.566MB (SLO: <43.500MB -2.1%) vs baseline: +4.9% ✅ capitalize_noaspectTime: ✅ 2.591µs (SLO: <10.000µs 📉 -74.1%) vs baseline: +0.6% Memory: ✅ 42.605MB (SLO: <43.500MB -2.1%) vs baseline: +5.0% ✅ casefold_aspectTime: ✅ 14.642µs (SLO: <20.000µs 📉 -26.8%) vs baseline: -0.4% Memory: ✅ 42.585MB (SLO: <43.500MB -2.1%) vs baseline: +4.9% ✅ casefold_noaspectTime: ✅ 3.170µs (SLO: <10.000µs 📉 -68.3%) vs baseline: ~same Memory: ✅ 42.585MB (SLO: <43.500MB -2.1%) vs baseline: +4.7% ✅ decode_aspectTime: ✅ 15.596µs (SLO: <30.000µs 📉 -48.0%) vs baseline: +0.3% Memory: ✅ 42.526MB (SLO: <43.500MB -2.2%) vs baseline: +4.6% ✅ decode_noaspectTime: ✅ 1.597µs (SLO: <10.000µs 📉 -84.0%) vs baseline: -0.6% Memory: ✅ 42.585MB (SLO: <43.500MB -2.1%) vs baseline: +4.7% ✅ encode_aspectTime: ✅ 18.059µs (SLO: <30.000µs 📉 -39.8%) vs baseline: 📈 +21.5% Memory: ✅ 42.585MB (SLO: <43.500MB -2.1%) vs baseline: +4.8% ✅ encode_noaspectTime: ✅ 1.492µs (SLO: <10.000µs 📉 -85.1%) vs baseline: -0.6% Memory: ✅ 42.625MB (SLO: <43.500MB -2.0%) vs baseline: +5.1% ✅ format_aspectTime: ✅ 171.285µs (SLO: <200.000µs 📉 -14.4%) vs baseline: +0.2% Memory: ✅ 42.664MB (SLO: <43.250MB 🟡 -1.4%) vs baseline: +5.0% ✅ format_map_aspectTime: ✅ 191.039µs (SLO: <200.000µs -4.5%) vs baseline: ~same Memory: ✅ 42.625MB (SLO: <43.500MB -2.0%) vs baseline: +4.8% ✅ format_map_noaspectTime: ✅ 3.780µs (SLO: <10.000µs 📉 -62.2%) vs baseline: +0.3% Memory: ✅ 42.684MB (SLO: <43.250MB 🟡 -1.3%) vs baseline: +5.1% ✅ format_noaspectTime: ✅ 3.140µs (SLO: <10.000µs 📉 -68.6%) vs baseline: -0.3% Memory: ✅ 42.566MB (SLO: <43.250MB 🟡 -1.6%) vs baseline: +4.8% ✅ index_aspectTime: ✅ 15.387µs (SLO: <20.000µs 📉 -23.1%) vs baseline: +0.6% Memory: ✅ 42.625MB (SLO: <43.250MB 🟡 -1.4%) vs baseline: +4.8% ✅ index_noaspectTime: ✅ 0.464µs (SLO: <10.000µs 📉 -95.4%) vs baseline: ~same Memory: ✅ 42.625MB (SLO: <43.500MB -2.0%) vs baseline: +5.0% ✅ join_aspectTime: ✅ 16.947µs (SLO: <20.000µs 📉 -15.3%) vs baseline: -0.7% Memory: ✅ 42.605MB (SLO: <43.500MB -2.1%) vs baseline: +4.9% ✅ join_noaspectTime: ✅ 1.548µs (SLO: <10.000µs 📉 -84.5%) vs baseline: -1.5% Memory: ✅ 42.644MB (SLO: <43.250MB 🟡 -1.4%) vs baseline: +5.0% ✅ ljust_aspectTime: ✅ 20.810µs (SLO: <30.000µs 📉 -30.6%) vs baseline: +0.2% Memory: ✅ 42.625MB (SLO: <43.250MB 🟡 -1.4%) vs baseline: +4.6% ✅ ljust_noaspectTime: ✅ 2.721µs (SLO: <10.000µs 📉 -72.8%) vs baseline: +0.4% Memory: ✅ 42.605MB (SLO: <43.250MB 🟡 -1.5%) vs baseline: +4.9% ✅ lower_aspectTime: ✅ 17.836µs (SLO: <30.000µs 📉 -40.5%) vs baseline: -0.4% Memory: ✅ 42.644MB (SLO: <43.500MB 🟡 -2.0%) vs baseline: +5.0% ✅ lower_noaspectTime: ✅ 2.428µs (SLO: <10.000µs 📉 -75.7%) vs baseline: +0.1% Memory: ✅ 42.546MB (SLO: <43.250MB 🟡 -1.6%) vs baseline: +4.7% ✅ lstrip_aspectTime: ✅ 21.822µs (SLO: <30.000µs 📉 -27.3%) vs baseline: 📈 +23.6% Memory: ✅ 42.585MB (SLO: <43.250MB 🟡 -1.5%) vs baseline: +5.0% ✅ lstrip_noaspectTime: ✅ 1.888µs (SLO: <10.000µs 📉 -81.1%) vs baseline: +1.2% Memory: ✅ 42.546MB (SLO: <43.500MB -2.2%) vs baseline: +4.7% ✅ modulo_aspectTime: ✅ 166.288µs (SLO: <200.000µs 📉 -16.9%) vs baseline: ~same Memory: ✅ 42.723MB (SLO: <43.500MB 🟡 -1.8%) vs baseline: +5.1% ✅ modulo_aspect_for_bytearray_bytearrayTime: ✅ 174.293µs (SLO: <200.000µs 📉 -12.9%) vs baseline: +0.1% Memory: ✅ 42.802MB (SLO: <43.500MB 🟡 -1.6%) vs baseline: +5.5% ✅ modulo_aspect_for_bytesTime: ✅ 168.668µs (SLO: <200.000µs 📉 -15.7%) vs baseline: -0.4% Memory: ✅ 42.546MB (SLO: <43.500MB -2.2%) vs baseline: +4.9% ✅ modulo_aspect_for_bytes_bytearrayTime: ✅ 172.367µs (SLO: <200.000µs 📉 -13.8%) vs baseline: +0.4% Memory: ✅ 42.644MB (SLO: <43.500MB 🟡 -2.0%) vs baseline: +5.0% ✅ modulo_noaspectTime: ✅ 3.669µs (SLO: <10.000µs 📉 -63.3%) vs baseline: +0.1% Memory: ✅ 42.605MB (SLO: <43.500MB -2.1%) vs baseline: +4.9% ✅ replace_aspectTime: ✅ 212.389µs (SLO: <300.000µs 📉 -29.2%) vs baseline: +0.2% Memory: ✅ 42.605MB (SLO: <44.000MB -3.2%) vs baseline: +4.6% ✅ replace_noaspectTime: ✅ 2.910µs (SLO: <10.000µs 📉 -70.9%) vs baseline: -0.2% Memory: ✅ 42.664MB (SLO: <43.500MB 🟡 -1.9%) vs baseline: +5.1% ✅ repr_aspectTime: ✅ 1.477µs (SLO: <10.000µs 📉 -85.2%) vs baseline: +4.4% Memory: ✅ 42.566MB (SLO: <43.500MB -2.1%) vs baseline: +4.8% ✅ repr_noaspectTime: ✅ 0.527µs (SLO: <10.000µs 📉 -94.7%) vs baseline: +0.8% Memory: ✅ 42.526MB (SLO: <43.500MB -2.2%) vs baseline: +4.6% ✅ rstrip_aspectTime: ✅ 19.005µs (SLO: <30.000µs 📉 -36.6%) vs baseline: -0.1% Memory: ✅ 42.585MB (SLO: <43.500MB -2.1%) vs baseline: +4.8% ✅ rstrip_noaspectTime: ✅ 1.935µs (SLO: <10.000µs 📉 -80.6%) vs baseline: +0.4% Memory: ✅ 42.644MB (SLO: <43.500MB 🟡 -2.0%) vs baseline: +5.1% ✅ slice_aspectTime: ✅ 15.961µs (SLO: <20.000µs 📉 -20.2%) vs baseline: +0.6% Memory: ✅ 42.585MB (SLO: <43.500MB -2.1%) vs baseline: +4.8% ✅ slice_noaspectTime: ✅ 0.596µs (SLO: <10.000µs 📉 -94.0%) vs baseline: -0.4% Memory: ✅ 42.625MB (SLO: <43.500MB -2.0%) vs baseline: +5.1% ✅ stringio_aspectTime: ✅ 54.091µs (SLO: <80.000µs 📉 -32.4%) vs baseline: -0.4% Memory: ✅ 42.644MB (SLO: <43.500MB 🟡 -2.0%) vs baseline: +4.9% ✅ stringio_noaspectTime: ✅ 3.649µs (SLO: <10.000µs 📉 -63.5%) vs baseline: +0.3% Memory: ✅ 42.566MB (SLO: <43.500MB -2.1%) vs baseline: +4.9% ✅ strip_aspectTime: ✅ 17.687µs (SLO: <20.000µs 📉 -11.6%) vs baseline: +0.6% Memory: ✅ 42.644MB (SLO: <43.500MB 🟡 -2.0%) vs baseline: +4.7% ✅ strip_noaspectTime: ✅ 1.866µs (SLO: <10.000µs 📉 -81.3%) vs baseline: +0.3% Memory: ✅ 42.585MB (SLO: <43.500MB -2.1%) vs baseline: +4.8% ✅ swapcase_aspectTime: ✅ 18.535µs (SLO: <30.000µs 📉 -38.2%) vs baseline: -0.3% Memory: ✅ 42.644MB (SLO: <43.500MB 🟡 -2.0%) vs baseline: +5.0% ✅ swapcase_noaspectTime: ✅ 2.792µs (SLO: <10.000µs 📉 -72.1%) vs baseline: ~same Memory: ✅ 42.585MB (SLO: <43.500MB -2.1%) vs baseline: +4.8% ✅ title_aspectTime: ✅ 18.207µs (SLO: <30.000µs 📉 -39.3%) vs baseline: -0.7% Memory: ✅ 42.625MB (SLO: <43.000MB 🟡 -0.9%) vs baseline: +5.0% ✅ title_noaspectTime: ✅ 2.662µs (SLO: <10.000µs 📉 -73.4%) vs baseline: -0.2% Memory: ✅ 42.625MB (SLO: <43.500MB -2.0%) vs baseline: +5.0% ✅ translate_aspectTime: ✅ 20.475µs (SLO: <30.000µs 📉 -31.8%) vs baseline: -0.9% Memory: ✅ 42.546MB (SLO: <43.500MB -2.2%) vs baseline: +4.9% ✅ translate_noaspectTime: ✅ 4.312µs (SLO: <10.000µs 📉 -56.9%) vs baseline: -0.1% Memory: ✅ 42.526MB (SLO: <43.500MB -2.2%) vs baseline: +4.7% ✅ upper_aspectTime: ✅ 18.043µs (SLO: <30.000µs 📉 -39.9%) vs baseline: -0.2% Memory: ✅ 42.585MB (SLO: <43.500MB -2.1%) vs baseline: +4.8% ✅ upper_noaspectTime: ✅ 2.436µs (SLO: <10.000µs 📉 -75.6%) vs baseline: -0.4% Memory: ✅ 42.585MB (SLO: <43.500MB -2.1%) vs baseline: +4.9% 📈 iastaspectsospath - 24/24✅ ospathbasename_aspectTime: ✅ 5.143µs (SLO: <10.000µs 📉 -48.6%) vs baseline: 📈 +20.0% Memory: ✅ 42.566MB (SLO: <43.500MB -2.1%) vs baseline: +4.7% ✅ ospathbasename_noaspectTime: ✅ 4.252µs (SLO: <10.000µs 📉 -57.5%) vs baseline: -1.5% Memory: ✅ 42.605MB (SLO: <43.500MB -2.1%) vs baseline: +5.0% ✅ ospathjoin_aspectTime: ✅ 6.261µs (SLO: <10.000µs 📉 -37.4%) vs baseline: -0.3% Memory: ✅ 42.585MB (SLO: <43.500MB -2.1%) vs baseline: +4.8% ✅ ospathjoin_noaspectTime: ✅ 6.301µs (SLO: <10.000µs 📉 -37.0%) vs baseline: -1.1% Memory: ✅ 42.585MB (SLO: <43.500MB -2.1%) vs baseline: +4.9% ✅ ospathnormcase_aspectTime: ✅ 3.541µs (SLO: <10.000µs 📉 -64.6%) vs baseline: -1.4% Memory: ✅ 42.743MB (SLO: <43.500MB 🟡 -1.7%) vs baseline: +5.4% ✅ ospathnormcase_noaspectTime: ✅ 3.615µs (SLO: <10.000µs 📉 -63.9%) vs baseline: -1.5% Memory: ✅ 42.625MB (SLO: <43.500MB -2.0%) vs baseline: +5.1% ✅ ospathsplit_aspectTime: ✅ 4.908µs (SLO: <10.000µs 📉 -50.9%) vs baseline: -0.7% Memory: ✅ 42.625MB (SLO: <43.500MB -2.0%) vs baseline: +5.1% ✅ ospathsplit_noaspectTime: ✅ 4.982µs (SLO: <10.000µs 📉 -50.2%) vs baseline: -0.8% Memory: ✅ 42.566MB (SLO: <43.500MB -2.1%) vs baseline: +4.9% ✅ ospathsplitdrive_aspectTime: ✅ 3.778µs (SLO: <10.000µs 📉 -62.2%) vs baseline: +0.2% Memory: ✅ 42.585MB (SLO: <43.500MB -2.1%) vs baseline: +5.0% ✅ ospathsplitdrive_noaspectTime: ✅ 0.749µs (SLO: <10.000µs 📉 -92.5%) vs baseline: -1.2% Memory: ✅ 42.526MB (SLO: <43.500MB -2.2%) vs baseline: +4.6% ✅ ospathsplitext_aspectTime: ✅ 4.637µs (SLO: <10.000µs 📉 -53.6%) vs baseline: +0.3% Memory: ✅ 42.585MB (SLO: <43.500MB -2.1%) vs baseline: +4.7% ✅ ospathsplitext_noaspectTime: ✅ 4.620µs (SLO: <10.000µs 📉 -53.8%) vs baseline: -0.7% Memory: ✅ 42.487MB (SLO: <43.500MB -2.3%) vs baseline: +4.8% 📈 telemetryaddmetric - 30/30✅ 1-count-metric-1-timesTime: ✅ 3.415µs (SLO: <20.000µs 📉 -82.9%) vs baseline: 📈 +15.2% Memory: ✅ 34.819MB (SLO: <35.500MB 🟡 -1.9%) vs baseline: +4.8% ✅ 1-count-metrics-100-timesTime: ✅ 200.600µs (SLO: <220.000µs -8.8%) vs baseline: +1.2% Memory: ✅ 34.898MB (SLO: <35.500MB 🟡 -1.7%) vs baseline: +5.0% ✅ 1-distribution-metric-1-timesTime: ✅ 3.393µs (SLO: <20.000µs 📉 -83.0%) vs baseline: +2.3% Memory: ✅ 34.878MB (SLO: <35.500MB 🟡 -1.8%) vs baseline: +5.0% ✅ 1-distribution-metrics-100-timesTime: ✅ 215.100µs (SLO: <230.000µs -6.5%) vs baseline: +0.8% Memory: ✅ 34.977MB (SLO: <35.500MB 🟡 -1.5%) vs baseline: +5.0% ✅ 1-gauge-metric-1-timesTime: ✅ 2.178µs (SLO: <20.000µs 📉 -89.1%) vs baseline: -0.9% Memory: ✅ 34.937MB (SLO: <35.500MB 🟡 -1.6%) vs baseline: +4.9% ✅ 1-gauge-metrics-100-timesTime: ✅ 136.673µs (SLO: <150.000µs -8.9%) vs baseline: +0.5% Memory: ✅ 34.878MB (SLO: <35.500MB 🟡 -1.8%) vs baseline: +4.9% ✅ 1-rate-metric-1-timesTime: ✅ 3.163µs (SLO: <20.000µs 📉 -84.2%) vs baseline: +0.6% Memory: ✅ 34.977MB (SLO: <35.500MB 🟡 -1.5%) vs baseline: +5.2% ✅ 1-rate-metrics-100-timesTime: ✅ 216.301µs (SLO: <250.000µs 📉 -13.5%) vs baseline: +2.0% Memory: ✅ 34.800MB (SLO: <35.500MB 🟡 -2.0%) vs baseline: +4.7% ✅ 100-count-metrics-100-timesTime: ✅ 20.106ms (SLO: <22.000ms -8.6%) vs baseline: +0.8% Memory: ✅ 34.918MB (SLO: <35.500MB 🟡 -1.6%) vs baseline: +4.9% ✅ 100-distribution-metrics-100-timesTime: ✅ 2.251ms (SLO: <2.550ms 📉 -11.7%) vs baseline: +0.2% Memory: ✅ 34.859MB (SLO: <35.500MB 🟡 -1.8%) vs baseline: +4.9% ✅ 100-gauge-metrics-100-timesTime: ✅ 1.412ms (SLO: <1.550ms -8.9%) vs baseline: +1.1% Memory: ✅ 34.898MB (SLO: <35.500MB 🟡 -1.7%) vs baseline: +5.0% ✅ 100-rate-metrics-100-timesTime: ✅ 2.187ms (SLO: <2.550ms 📉 -14.3%) vs baseline: +0.3% Memory: ✅ 34.800MB (SLO: <35.500MB 🟡 -2.0%) vs baseline: +4.6% ✅ flush-1-metricTime: ✅ 4.526µs (SLO: <20.000µs 📉 -77.4%) vs baseline: -1.0% Memory: ✅ 34.977MB (SLO: <35.500MB 🟡 -1.5%) vs baseline: +4.6% ✅ flush-100-metricsTime: ✅ 173.912µs (SLO: <250.000µs 📉 -30.4%) vs baseline: -0.7% Memory: ✅ 35.232MB (SLO: <35.500MB 🟡 -0.8%) vs baseline: +4.8% ✅ flush-1000-metricsTime: ✅ 2.182ms (SLO: <2.500ms 📉 -12.7%) vs baseline: +0.5% Memory: ✅ 36.038MB (SLO: <36.500MB 🟡 -1.3%) vs baseline: +4.9% 🟡 Near SLO Breach (16 suites)🟡 coreapiscenario - 10/10 (1 unstable)
|
## Description This improves typing in a test file. Related - #15797
|
The backport to To backport manually, run these commands in your terminal: # Fetch latest updates from GitHub
git fetch
# Create a new working tree
git worktree add .worktrees/backport-3.19 3.19
# Navigate to the new working tree
cd .worktrees/backport-3.19
# Create a new branch
git switch --create backport-15796-to-3.19
# Cherry-pick the merged commit of this pull request and resolve the conflicts
git cherry-pick -x --mainline 1 929596a4588234b345cc11c621906695de3959e2
# Push it to GitHub
git push --set-upstream origin backport-15796-to-3.19
# Go back to the original working tree
cd ../..
# Delete the working tree
git worktree remove .worktrees/backport-3.19Then, create a pull request where the |
|
The backport to To backport manually, run these commands in your terminal: # Fetch latest updates from GitHub
git fetch
# Create a new working tree
git worktree add .worktrees/backport-4.0 4.0
# Navigate to the new working tree
cd .worktrees/backport-4.0
# Create a new branch
git switch --create backport-15796-to-4.0
# Cherry-pick the merged commit of this pull request and resolve the conflicts
git cherry-pick -x --mainline 1 929596a4588234b345cc11c621906695de3959e2
# Push it to GitHub
git push --set-upstream origin backport-15796-to-4.0
# Go back to the original working tree
cd ../..
# Delete the working tree
git worktree remove .worktrees/backport-4.0Then, create a pull request where the |
Backport 929596a from #15796 to 4.1. ## Description This improves typing in a test file. Related - #15797 - #15814 Co-authored-by: Thomas Kowalski <[email protected]>
## Description This makes some tests less flaky. Previously, we would sometimes parse an empty Profile (0 samples in it) and make the test fail. The fix is to, when this happens, ignore the failure and parse/use the previous Profile instead (which we expect to ALWAYS be non-empty). - [See in Flaky Management](https://app.datadoghq.com/ci/test/flaky?query=%40test.codeowners%3A%2Aprofiling-python%2A%20flaky_test_state%3Aquarantined%20%40test.suite%3Atest_main.py&sort=-pipelines_failed&viewMode=flaky) - [See failures on this branch](https://app.datadoghq.com/ci/test/runs?query=test_level%3Atest%20%40test.codeowners%3A%2Aprofiling-python%2A%20%40test.suite%3Atest_main.py%20status%3Aerror%20%40git.branch%3Akowalski%2Ftest-profiling-unflake-some-tests&agg_m=count&agg_m_source=base&agg_t=count&fromUser=false&index=citest&start=1766388450558&end=1766993250558&paused=false) Related - #15796
## Description This makes some tests less flaky. Previously, we would sometimes parse an empty Profile (0 samples in it) and make the test fail. The fix is to, when this happens, ignore the failure and parse/use the previous Profile instead (which we expect to ALWAYS be non-empty). - [See in Flaky Management](https://app.datadoghq.com/ci/test/flaky?query=%40test.codeowners%3A%2Aprofiling-python%2A%20flaky_test_state%3Aquarantined%20%40test.suite%3Atest_main.py&sort=-pipelines_failed&viewMode=flaky) - [See failures on this branch](https://app.datadoghq.com/ci/test/runs?query=test_level%3Atest%20%40test.codeowners%3A%2Aprofiling-python%2A%20%40test.suite%3Atest_main.py%20status%3Aerror%20%40git.branch%3Akowalski%2Ftest-profiling-unflake-some-tests&agg_m=count&agg_m_source=base&agg_t=count&fromUser=false&index=citest&start=1766388450558&end=1766993250558&paused=false) Related - #15796 (cherry picked from commit 4e2e136)
## Description This makes some tests less flaky. Previously, we would sometimes parse an empty Profile (0 samples in it) and make the test fail. The fix is to, when this happens, ignore the failure and parse/use the previous Profile instead (which we expect to ALWAYS be non-empty). - [See in Flaky Management](https://app.datadoghq.com/ci/test/flaky?query=%40test.codeowners%3A%2Aprofiling-python%2A%20flaky_test_state%3Aquarantined%20%40test.suite%3Atest_main.py&sort=-pipelines_failed&viewMode=flaky) - [See failures on this branch](https://app.datadoghq.com/ci/test/runs?query=test_level%3Atest%20%40test.codeowners%3A%2Aprofiling-python%2A%20%40test.suite%3Atest_main.py%20status%3Aerror%20%40git.branch%3Akowalski%2Ftest-profiling-unflake-some-tests&agg_m=count&agg_m_source=base&agg_t=count&fromUser=false&index=citest&start=1766388450558&end=1766993250558&paused=false) Related - #15796 (cherry picked from commit 4e2e136)
## Description This makes some tests less flaky. Previously, we would sometimes parse an empty Profile (0 samples in it) and make the test fail. The fix is to, when this happens, ignore the failure and parse/use the previous Profile instead (which we expect to ALWAYS be non-empty). - [See in Flaky Management](https://app.datadoghq.com/ci/test/flaky?query=%40test.codeowners%3A%2Aprofiling-python%2A%20flaky_test_state%3Aquarantined%20%40test.suite%3Atest_main.py&sort=-pipelines_failed&viewMode=flaky) - [See failures on this branch](https://app.datadoghq.com/ci/test/runs?query=test_level%3Atest%20%40test.codeowners%3A%2Aprofiling-python%2A%20%40test.suite%3Atest_main.py%20status%3Aerror%20%40git.branch%3Akowalski%2Ftest-profiling-unflake-some-tests&agg_m=count&agg_m_source=base&agg_t=count&fromUser=false&index=citest&start=1766388450558&end=1766993250558&paused=false) Related - #15796 (cherry picked from commit 4e2e136)
## Description This makes some tests less flaky. Previously, we would sometimes parse an empty Profile (0 samples in it) and make the test fail. The fix is to, when this happens, ignore the failure and parse/use the previous Profile instead (which we expect to ALWAYS be non-empty). - [See in Flaky Management](https://app.datadoghq.com/ci/test/flaky?query=%40test.codeowners%3A%2Aprofiling-python%2A%20flaky_test_state%3Aquarantined%20%40test.suite%3Atest_main.py&sort=-pipelines_failed&viewMode=flaky) - [See failures on this branch](https://app.datadoghq.com/ci/test/runs?query=test_level%3Atest%20%40test.codeowners%3A%2Aprofiling-python%2A%20%40test.suite%3Atest_main.py%20status%3Aerror%20%40git.branch%3Akowalski%2Ftest-profiling-unflake-some-tests&agg_m=count&agg_m_source=base&agg_t=count&fromUser=false&index=citest&start=1766388450558&end=1766993250558&paused=false) Related - #15796 (cherry picked from commit 4e2e136)
Backport 4e2e136 from #15797 to 4.1. ## Description This makes some tests less flaky. Previously, we would sometimes parse an empty Profile (0 samples in it) and make the test fail. The fix is to, when this happens, ignore the failure and parse/use the previous Profile instead (which we expect to ALWAYS be non-empty). - [See in Flaky Management](https://app.datadoghq.com/ci/test/flaky?query=%40test.codeowners%3A%2Aprofiling-python%2A%20flaky_test_state%3Aquarantined%20%40test.suite%3Atest_main.py&sort=-pipelines_failed&viewMode=flaky) - [See failures on this branch](https://app.datadoghq.com/ci/test/runs?query=test_level%3Atest%20%40test.codeowners%3A%2Aprofiling-python%2A%20%40test.suite%3Atest_main.py%20status%3Aerror%20%40git.branch%3Akowalski%2Ftest-profiling-unflake-some-tests&agg_m=count&agg_m_source=base&agg_t=count&fromUser=false&index=citest&start=1766388450558&end=1766993250558&paused=false) Related - #15796 Co-authored-by: Thomas Kowalski <[email protected]>
## Description This makes some tests less flaky. Previously, we would sometimes parse an empty Profile (0 samples in it) and make the test fail. The fix is to, when this happens, ignore the failure and parse/use the previous Profile instead (which we expect to ALWAYS be non-empty). - [See in Flaky Management](https://app.datadoghq.com/ci/test/flaky?query=%40test.codeowners%3A%2Aprofiling-python%2A%20flaky_test_state%3Aquarantined%20%40test.suite%3Atest_main.py&sort=-pipelines_failed&viewMode=flaky) - [See failures on this branch](https://app.datadoghq.com/ci/test/runs?query=test_level%3Atest%20%40test.codeowners%3A%2Aprofiling-python%2A%20%40test.suite%3Atest_main.py%20status%3Aerror%20%40git.branch%3Akowalski%2Ftest-profiling-unflake-some-tests&agg_m=count&agg_m_source=base&agg_t=count&fromUser=false&index=citest&start=1766388450558&end=1766993250558&paused=false) Related - #15796 (cherry picked from commit 4e2e136)
## Description This improves typing in a test file. Related - DataDog#15797
## Description This makes some tests less flaky. Previously, we would sometimes parse an empty Profile (0 samples in it) and make the test fail. The fix is to, when this happens, ignore the failure and parse/use the previous Profile instead (which we expect to ALWAYS be non-empty). - [See in Flaky Management](https://app.datadoghq.com/ci/test/flaky?query=%40test.codeowners%3A%2Aprofiling-python%2A%20flaky_test_state%3Aquarantined%20%40test.suite%3Atest_main.py&sort=-pipelines_failed&viewMode=flaky) - [See failures on this branch](https://app.datadoghq.com/ci/test/runs?query=test_level%3Atest%20%40test.codeowners%3A%2Aprofiling-python%2A%20%40test.suite%3Atest_main.py%20status%3Aerror%20%40git.branch%3Akowalski%2Ftest-profiling-unflake-some-tests&agg_m=count&agg_m_source=base&agg_t=count&fromUser=false&index=citest&start=1766388450558&end=1766993250558&paused=false) Related - DataDog#15796
## Description This makes some tests less flaky. Previously, we would sometimes parse an empty Profile (0 samples in it) and make the test fail. The fix is to, when this happens, ignore the failure and parse/use the previous Profile instead (which we expect to ALWAYS be non-empty). - [See in Flaky Management](https://app.datadoghq.com/ci/test/flaky?query=%40test.codeowners%3A%2Aprofiling-python%2A%20flaky_test_state%3Aquarantined%20%40test.suite%3Atest_main.py&sort=-pipelines_failed&viewMode=flaky) - [See failures on this branch](https://app.datadoghq.com/ci/test/runs?query=test_level%3Atest%20%40test.codeowners%3A%2Aprofiling-python%2A%20%40test.suite%3Atest_main.py%20status%3Aerror%20%40git.branch%3Akowalski%2Ftest-profiling-unflake-some-tests&agg_m=count&agg_m_source=base&agg_t=count&fromUser=false&index=citest&start=1766388450558&end=1766993250558&paused=false) Related - #15796
Description
This improves typing in a test file.
Related