-
Notifications
You must be signed in to change notification settings - Fork 12.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Tracking Issue for asm_goto #119364
Comments
Where is this coming from? Is there a lang MCP or anything like that? |
Add asm goto support to `asm!` Tracking issue: rust-lang#119364 This PR implements asm-goto support, using the syntax described in "future possibilities" section of [RFC2873](https://rust-lang.github.io/rfcs/2873-inline-asm.html#asm-goto). Currently I have only implemented the `label` part, not the `fallthrough` part (i.e. fallthrough is implicit). This doesn't reduce the expressive though, since you can use label-break to get arbitrary control flow or simply set a value and rely on jump threading optimisation to get the desired control flow. I can add that later if deemed necessary. r? `@Amanieu` cc `@ojeda`
Add asm goto support to `asm!` Tracking issue: rust-lang#119364 This PR implements asm-goto support, using the syntax described in "future possibilities" section of [RFC2873](https://rust-lang.github.io/rfcs/2873-inline-asm.html#asm-goto). Currently I have only implemented the `label` part, not the `fallthrough` part (i.e. fallthrough is implicit). This doesn't reduce the expressive though, since you can use label-break to get arbitrary control flow or simply set a value and rely on jump threading optimisation to get the desired control flow. I can add that later if deemed necessary. r? `@Amanieu` cc `@ojeda`
Add asm goto support to `asm!` Tracking issue: rust-lang#119364 This PR implements asm-goto support, using the syntax described in "future possibilities" section of [RFC2873](https://rust-lang.github.io/rfcs/2873-inline-asm.html#asm-goto). Currently I have only implemented the `label` part, not the `fallthrough` part (i.e. fallthrough is implicit). This doesn't reduce the expressive though, since you can use label-break to get arbitrary control flow or simply set a value and rely on jump threading optimisation to get the desired control flow. I can add that later if deemed necessary. r? `@Amanieu` cc `@ojeda`
Add asm goto support to `asm!` Tracking issue: rust-lang#119364 This PR implements asm-goto support, using the syntax described in "future possibilities" section of [RFC2873](https://rust-lang.github.io/rfcs/2873-inline-asm.html#asm-goto). Currently I have only implemented the `label` part, not the `fallthrough` part (i.e. fallthrough is implicit). This doesn't reduce the expressive though, since you can use label-break to get arbitrary control flow or simply set a value and rely on jump threading optimisation to get the desired control flow. I can add that later if deemed necessary. r? ``@Amanieu`` cc ``@ojeda``
Rollup merge of rust-lang#119365 - nbdd0121:asm-goto, r=Amanieu Add asm goto support to `asm!` Tracking issue: rust-lang#119364 This PR implements asm-goto support, using the syntax described in "future possibilities" section of [RFC2873](https://rust-lang.github.io/rfcs/2873-inline-asm.html#asm-goto). Currently I have only implemented the `label` part, not the `fallthrough` part (i.e. fallthrough is implicit). This doesn't reduce the expressive though, since you can use label-break to get arbitrary control flow or simply set a value and rely on jump threading optimisation to get the desired control flow. I can add that later if deemed necessary. r? ``@Amanieu`` cc ``@ojeda``
Add asm goto support to `asm!` Tracking issue: rust-lang#119364 This PR implements asm-goto support, using the syntax described in "future possibilities" section of [RFC2873](https://rust-lang.github.io/rfcs/2873-inline-asm.html#asm-goto). Currently I have only implemented the `label` part, not the `fallthrough` part (i.e. fallthrough is implicit). This doesn't reduce the expressive though, since you can use label-break to get arbitrary control flow or simply set a value and rely on jump threading optimisation to get the desired control flow. I can add that later if deemed necessary. r? ``@Amanieu`` cc ``@ojeda``
Add asm goto support to `asm!` Tracking issue: rust-lang#119364 This PR implements asm-goto support, using the syntax described in "future possibilities" section of [RFC2873](https://rust-lang.github.io/rfcs/2873-inline-asm.html#asm-goto). Currently I have only implemented the `label` part, not the `fallthrough` part (i.e. fallthrough is implicit). This doesn't reduce the expressive though, since you can use label-break to get arbitrary control flow or simply set a value and rely on jump threading optimisation to get the desired control flow. I can add that later if deemed necessary. r? ``@Amanieu`` cc ``@ojeda``
This is the next upgrade to the Rust toolchain, from 1.77.1 to 1.78.0 (i.e. the latest) [1]. See the upgrade policy [2] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). # Unstable features There have been no changes to the set of unstable features used in our own code. Therefore, the only unstable features allowed to be used outside the `kernel` crate is still `new_uninit`. However, since we are finally dropping our `alloc` fork [3], all the unstable features used by `alloc` (~30 language ones, ~60 library ones) are not a concern anymore. This reduces the maintanance burden, increases the chances of new compiler versions working without changes and gets us closer to the goal of supporting several compiler versions. It also means that, ignoring non-language/library features, we are currently left with just the few language features needed to implement the kernel `Arc`, the `new_uninit` library feature, the `compiler_builtins` marker and the few `no_*` `cfg`s we pass when compiling `core`/`alloc`. Please see [4] for details. # Required changes ## LLVM's data layout Rust 1.77.0 (i.e. the previous upgrade) introduced a check for matching LLVM data layouts [5]. Then, Rust 1.78.0 upgraded LLVM's bundled major version from 17 to 18 [6], which changed the data layout in x86 [7]. Thus update the data layout in our custom target specification for x86 so that the compiler does not complain about the mismatch: error: data-layout for target `target-5559158138856098584`, `e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128`, differs from LLVM target's `x86_64-linux-gnu` default layout, `e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-i128:128-f80:128-n8:16:32:64-S128` In the future, the goal is to drop the custom target specification files. Meanwhile, if we want to support other LLVM versions used in `rustc` (e.g. for LTO), we will need to add some extra logic (e.g. conditional on LLVM's version, or extracting the data layout from an existing built-in target specification). ## `unused_imports` Rust's `unused_imports` lint covers both unused and redudant imports. Now, in 1.78.0, the lint detects more cases of redundant imports [8]. Thus the previous commit cleaned them up. ## Clippy's `new_without_default` Clippy now suggests to implement `Default` even when `new()` is `const`, since `Default::default()` may call `const` functions even if it is not `const` itself [9]. Thus the previous commit added the implementation. # Other changes in Rust Rust 1.78.0 introduces `feature(asm_goto)` [10] [11]. This feature was discussed in the past [12]. Rust 1.78.0 introduced support for mutable pointers to Rust statics, including a test case for the Linux kernel's `VTABLE` use case [13]. Rust 1.78.0 with debug assertions enabled (i.e. `-Cdebug-assertions=y`, kernel's `CONFIG_RUST_DEBUG_ASSERTIONS=y`) will now always check all unsafe preconditions, without a way to opt-out for particular cases [14]. Rust 1.78.0 also improved a couple issues we reported when giving feedback for the new `--check-cfg` feature [15] [16]. # `alloc` upgrade and reviewing As mentioned above, compiler upgrades will not update `alloc` anymore, since we are dropping our `alloc` fork [3]. As a bonus, even if that series is not applied, the new compiler release happens to build cleanly the existing `alloc` too (i.e. the previous version's). Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1770-2024-03-21 [1] Link: https://rust-for-linux.com/rust-version-policy [2] Link: https://lore.kernel.org/rust-for-linux/[email protected]/ [3] Link: Rust-for-Linux#2 [4] Link: rust-lang/rust#120062 [5] Link: rust-lang/rust#120055 [6] Link: https://reviews.llvm.org/D86310 [7] Link: rust-lang/rust#117772 [8] Link: rust-lang/rust-clippy#10903 [9] Link: rust-lang/rust#119365 [10] Link: rust-lang/rust#119364 [11] Link: https://lore.kernel.org/rust-for-linux/[email protected]/ [12] Link: rust-lang/rust#120932 [13] Link: rust-lang/rust#120969 [14] Link: rust-lang/rust#121202 [15] Link: rust-lang/rust#121237 [16] Signed-off-by: Miguel Ojeda <[email protected]>
This is the next upgrade to the Rust toolchain, from 1.77.1 to 1.78.0 (i.e. the latest) [1]. See the upgrade policy [2] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). # Unstable features There have been no changes to the set of unstable features used in our own code. Therefore, the only unstable features allowed to be used outside the `kernel` crate is still `new_uninit`. However, since we are finally dropping our `alloc` fork [3], all the unstable features used by `alloc` (~30 language ones, ~60 library ones) are not a concern anymore. This reduces the maintenance burden, increases the chances of new compiler versions working without changes and gets us closer to the goal of supporting several compiler versions. It also means that, ignoring non-language/library features, we are currently left with just the few language features needed to implement the kernel `Arc`, the `new_uninit` library feature, the `compiler_builtins` marker and the few `no_*` `cfg`s we pass when compiling `core`/`alloc`. Please see [4] for details. # Required changes ## LLVM's data layout Rust 1.77.0 (i.e. the previous upgrade) introduced a check for matching LLVM data layouts [5]. Then, Rust 1.78.0 upgraded LLVM's bundled major version from 17 to 18 [6], which changed the data layout in x86 [7]. Thus update the data layout in our custom target specification for x86 so that the compiler does not complain about the mismatch: error: data-layout for target `target-5559158138856098584`, `e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128`, differs from LLVM target's `x86_64-linux-gnu` default layout, `e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-i128:128-f80:128-n8:16:32:64-S128` In the future, the goal is to drop the custom target specification files. Meanwhile, if we want to support other LLVM versions used in `rustc` (e.g. for LTO), we will need to add some extra logic (e.g. conditional on LLVM's version, or extracting the data layout from an existing built-in target specification). ## `unused_imports` Rust's `unused_imports` lint covers both unused and redundant imports. Now, in 1.78.0, the lint detects more cases of redundant imports [8]. Thus one of the previous patches cleaned them up. ## Clippy's `new_without_default` Clippy now suggests to implement `Default` even when `new()` is `const`, since `Default::default()` may call `const` functions even if it is not `const` itself [9]. Thus one of the previous patches implemented it. # Other changes in Rust Rust 1.78.0 introduced `feature(asm_goto)` [10] [11]. This feature was discussed in the past [12]. Rust 1.78.0 introduced support for mutable pointers to Rust statics, including a test case for the Linux kernel's `VTABLE` use case [13]. Rust 1.78.0 with debug assertions enabled (i.e. `-Cdebug-assertions=y`, kernel's `CONFIG_RUST_DEBUG_ASSERTIONS=y`) now always checks all unsafe preconditions, without a way to opt-out for particular cases [14]. Rust 1.78.0 also improved a couple issues we reported when giving feedback for the new `--check-cfg` feature [15] [16]. # `alloc` upgrade and reviewing As mentioned above, compiler upgrades will not update `alloc` anymore, since we are dropping our `alloc` fork [3]. Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1780-2024-05-02 [1] Link: https://rust-for-linux.com/rust-version-policy [2] Link: https://lore.kernel.org/rust-for-linux/[email protected]/ [3] Link: Rust-for-Linux#2 [4] Link: rust-lang/rust#120062 [5] Link: rust-lang/rust#120055 [6] Link: https://reviews.llvm.org/D86310 [7] Link: rust-lang/rust#117772 [8] Link: rust-lang/rust-clippy#10903 [9] Link: rust-lang/rust#119365 [10] Link: rust-lang/rust#119364 [11] Link: https://lore.kernel.org/rust-for-linux/[email protected]/ [12] Link: rust-lang/rust#120932 [13] Link: rust-lang/rust#120969 [14] Link: rust-lang/rust#121202 [15] Link: rust-lang/rust#121237 [16] Signed-off-by: Miguel Ojeda <[email protected]>
This is the next upgrade to the Rust toolchain, from 1.77.1 to 1.78.0 (i.e. the latest) [1]. See the upgrade policy [2] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). # Unstable features There have been no changes to the set of unstable features used in our own code. Therefore, the only unstable features allowed to be used outside the `kernel` crate is still `new_uninit`. However, since we are finally dropping our `alloc` fork [3], all the unstable features used by `alloc` (~30 language ones, ~60 library ones) are not a concern anymore. This reduces the maintenance burden, increases the chances of new compiler versions working without changes and gets us closer to the goal of supporting several compiler versions. It also means that, ignoring non-language/library features, we are currently left with just the few language features needed to implement the kernel `Arc`, the `new_uninit` library feature, the `compiler_builtins` marker and the few `no_*` `cfg`s we pass when compiling `core`/`alloc`. Please see [4] for details. # Required changes ## LLVM's data layout Rust 1.77.0 (i.e. the previous upgrade) introduced a check for matching LLVM data layouts [5]. Then, Rust 1.78.0 upgraded LLVM's bundled major version from 17 to 18 [6], which changed the data layout in x86 [7]. Thus update the data layout in our custom target specification for x86 so that the compiler does not complain about the mismatch: error: data-layout for target `target-5559158138856098584`, `e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128`, differs from LLVM target's `x86_64-linux-gnu` default layout, `e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-i128:128-f80:128-n8:16:32:64-S128` In the future, the goal is to drop the custom target specifications. Meanwhile, if we want to support other LLVM versions used in `rustc` (e.g. for LTO), we will need to add some extra logic (e.g. conditional on LLVM's version, or extracting the data layout from an existing built-in target specification). ## `unused_imports` Rust's `unused_imports` lint covers both unused and redundant imports. Now, in 1.78.0, the lint detects more cases of redundant imports [8]. Thus one of the previous patches cleaned them up. ## Clippy's `new_without_default` Clippy now suggests to implement `Default` even when `new()` is `const`, since `Default::default()` may call `const` functions even if it is not `const` itself [9]. Thus one of the previous patches implemented it. # Other changes in Rust Rust 1.78.0 introduced `feature(asm_goto)` [10] [11]. This feature was discussed in the past [12]. Rust 1.78.0 introduced support for mutable pointers to Rust statics, including a test case for the Linux kernel's `VTABLE` use case [13]. Rust 1.78.0 with debug assertions enabled (i.e. `-Cdebug-assertions=y`, kernel's `CONFIG_RUST_DEBUG_ASSERTIONS=y`) now always checks all unsafe preconditions, without a way to opt-out for particular cases [14]. Rust 1.78.0 also improved a couple issues we reported when giving feedback for the new `--check-cfg` feature [15] [16]. # `alloc` upgrade and reviewing As mentioned above, compiler upgrades will not update `alloc` anymore, since we are dropping our `alloc` fork [3]. Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1780-2024-05-02 [1] Link: https://rust-for-linux.com/rust-version-policy [2] Link: https://lore.kernel.org/rust-for-linux/[email protected]/ [3] Link: Rust-for-Linux#2 [4] Link: rust-lang/rust#120062 [5] Link: rust-lang/rust#120055 [6] Link: https://reviews.llvm.org/D86310 [7] Link: rust-lang/rust#117772 [8] Link: rust-lang/rust-clippy#10903 [9] Link: rust-lang/rust#119365 [10] Link: rust-lang/rust#119364 [11] Link: https://lore.kernel.org/rust-for-linux/[email protected]/ [12] Link: rust-lang/rust#120932 [13] Link: rust-lang/rust#120969 [14] Link: rust-lang/rust#121202 [15] Link: rust-lang/rust#121237 [16] Signed-off-by: Miguel Ojeda <[email protected]>
This is the next upgrade to the Rust toolchain, from 1.77.1 to 1.78.0 (i.e. the latest) [1]. See the upgrade policy [2] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). It is much smaller than previous upgrades, since the `alloc` fork was dropped in commit 9d0441b ("rust: alloc: remove our fork of the `alloc` crate") [3]. # Unstable features There have been no changes to the set of unstable features used in our own code. Therefore, the only unstable features allowed to be used outside the `kernel` crate is still `new_uninit`. However, since we finally dropped our `alloc` fork [3], all the unstable features used by `alloc` (~30 language ones, ~60 library ones) are not a concern anymore. This reduces the maintenance burden, increases the chances of new compiler versions working without changes and gets us closer to the goal of supporting several compiler versions. It also means that, ignoring non-language/library features, we are currently left with just the few language features needed to implement the kernel `Arc`, the `new_uninit` library feature, the `compiler_builtins` marker and the few `no_*` `cfg`s we pass when compiling `core`/`alloc`. Please see [4] for details. # Required changes ## LLVM's data layout Rust 1.77.0 (i.e. the previous upgrade) introduced a check for matching LLVM data layouts [5]. Then, Rust 1.78.0 upgraded LLVM's bundled major version from 17 to 18 [6], which changed the data layout in x86 [7]. Thus update the data layout in our custom target specification for x86 so that the compiler does not complain about the mismatch: error: data-layout for target `target-5559158138856098584`, `e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128`, differs from LLVM target's `x86_64-linux-gnu` default layout, `e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-i128:128-f80:128-n8:16:32:64-S128` In the future, the goal is to drop the custom target specifications. Meanwhile, if we want to support other LLVM versions used in `rustc` (e.g. for LTO), we will need to add some extra logic (e.g. conditional on LLVM's version, or extracting the data layout from an existing built-in target specification). ## `unused_imports` Rust's `unused_imports` lint covers both unused and redundant imports. Now, in 1.78.0, the lint detects more cases of redundant imports [8]. Thus one of the previous patches cleaned them up. ## Clippy's `new_without_default` Clippy now suggests to implement `Default` even when `new()` is `const`, since `Default::default()` may call `const` functions even if it is not `const` itself [9]. Thus one of the previous patches implemented it. # Other changes in Rust Rust 1.78.0 introduced `feature(asm_goto)` [10] [11]. This feature was discussed in the past [12]. Rust 1.78.0 introduced `feature(const_refs_to_static)` [13] to allow referencing statics in constants and extended `feature(const_mut_refs)` to allow raw mutable pointers in constants. Together, this should cover the kernel's `VTABLE` use case. In fact, the implementation [14] in upstream Rust added a test case for it [15]. Rust 1.78.0 with debug assertions enabled (i.e. `-Cdebug-assertions=y`, kernel's `CONFIG_RUST_DEBUG_ASSERTIONS=y`) now always checks all unsafe preconditions, though without a way to opt-out for particular cases [16]. It would be ideal to have a way to selectively disable certain checks per-call site for this one (i.e. not just per check but for particular instances of a check), even if the vast majority of the checks remain in place [17]. Rust 1.78.0 also improved a couple issues we reported when giving feedback for the new `--check-cfg` feature [18] [19]. # `alloc` upgrade and reviewing As mentioned above, compiler upgrades will not update `alloc` anymore, since we dropped our `alloc` fork [3]. Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1780-2024-05-02 [1] Link: https://rust-for-linux.com/rust-version-policy [2] Link: https://lore.kernel.org/rust-for-linux/[email protected]/ [3] Link: Rust-for-Linux#2 [4] Link: rust-lang/rust#120062 [5] Link: rust-lang/rust#120055 [6] Link: https://reviews.llvm.org/D86310 [7] Link: rust-lang/rust#117772 [8] Link: rust-lang/rust-clippy#10903 [9] Link: rust-lang/rust#119365 [10] Link: rust-lang/rust#119364 [11] Link: https://lore.kernel.org/rust-for-linux/[email protected]/ [12] Link: rust-lang/rust#119618 [13] Link: rust-lang/rust#120932 [14] Link: https://github.com/rust-lang/rust/pull/120932/files#diff-e6fc1622c46054cd46b1d225c5386c5554564b3b0fa8a03c2dc2d8627a1079d9 [15] Link: rust-lang/rust#120969 [16] Link: Rust-for-Linux#354 [17] Link: rust-lang/rust#121202 [18] Link: rust-lang/rust#121237 [19] Reviewed-by: Alice Ryhl <[email protected]> Link: https://lore.kernel.org/r/[email protected] [ Added a few more details and links I mentioned in the list. - Miguel ] Signed-off-by: Miguel Ojeda <[email protected]>
Could we support a named label rather than being only positional? Maybe unsafe { asm!(
"jmp {foo}",
label foo {
println!("Jumped from asm!");
}
);} (I mean that |
unsafe { asm!(
"jmp {foo}",
foo = label {
println!("Jumped from asm!");
}
);} is closer to the syntax used by other operands. |
oh, that does actually work already. Awesome |
Add asm goto support to `asm!` Tracking issue: rust-lang#119364 This PR implements asm-goto support, using the syntax described in "future possibilities" section of [RFC2873](https://rust-lang.github.io/rfcs/2873-inline-asm.html#asm-goto). Currently I have only implemented the `label` part, not the `fallthrough` part (i.e. fallthrough is implicit). This doesn't reduce the expressive though, since you can use label-break to get arbitrary control flow or simply set a value and rely on jump threading optimisation to get the desired control flow. I can add that later if deemed necessary. r? ``@Amanieu`` cc ``@ojeda``
In today's Rust-for-Linux meeting, we discussed this syntax. We realized a potential issue that wasn't considered during the design: Because We talked about a few possible ways to solve this. One that seemed appealing in the RfL meeting: We could change the label blocks to be safe code by default. (There's some precedent for switching back to safe in unsafe code: if you define an item in an unsafe block, the contents of the item are safe.) And, to make it less painful to use |
Do you mean a proposed future different extension to |
I think we also need a more general |
When I said:
I mean this: {'bar: { asm!("...", foo = label { break 'bar true; }); false }} |
@nbdd0121 wrote up this document on advanced assembly usage in the Linux kernel. |
The feature gate for the issue is
#![feature(asm_goto)]
.Summary
This feature adds a
label<block>
operand type toasm!
.Example:
The block must have unit type.
Steps
Unresolved Questions
@rustbot labels: +A-inline-assembly +F-asm
The text was updated successfully, but these errors were encountered: