Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add new ARKitScenes example #1538

Merged
merged 53 commits into from
Apr 4, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
53 commits
Select commit Hold shift + click to select a range
10b1034
add arkitscenes python example
pablovela5620 Mar 9, 2023
f3cafc6
add another example
pablovela5620 Mar 9, 2023
0958637
fixed linter errors
pablovela5620 Mar 9, 2023
af8a555
add type annotations to download dataset
pablovela5620 Mar 9, 2023
90381e8
remove extraneous functions, fix linter erros
pablovela5620 Mar 9, 2023
d480d95
log all images rather then just those with traj
pablovela5620 Mar 10, 2023
180d09f
remove orientation code for portrait mode samples
pablovela5620 Mar 10, 2023
ea502be
add mesh/annotations download
pablovela5620 Mar 11, 2023
ecb5e8b
log ply mesh
pablovela5620 Mar 11, 2023
ebf126b
update requirements to include numpy and trimesh
pablovela5620 Mar 11, 2023
23f31a3
add 3d bounding boxes to scene
pablovela5620 Mar 12, 2023
dcb7372
simplify traj_string_to_matrix
pablovela5620 Mar 21, 2023
a72e915
log mesh in glb format
pablovela5620 Mar 21, 2023
961e30c
add view coords and cv2 convert
pablovela5620 Mar 21, 2023
2c790e8
swap mesh/bbox logging order, add todo
pablovela5620 Mar 21, 2023
23f3830
Update examples/python/arkitscenes/main.py
pablovela5620 Mar 22, 2023
9a7c96c
Update examples/python/arkitscenes/main.py
pablovela5620 Mar 22, 2023
30e47ba
update licensing info
pablovela5620 Mar 22, 2023
5c5324d
add more comments to help give context
pablovela5620 Mar 22, 2023
f2ea241
Merge branch 'main' into pablovela5620/arkitscenes
emilk Mar 22, 2023
c3a4630
chmod +x examples/python/arkitscenes/main.py
emilk Mar 22, 2023
0dc670c
Better error message when failing to find ply file
emilk Mar 22, 2023
9e6d753
Use log_mesh to not encode as glb
emilk Mar 22, 2023
16a9ac5
Revert changes to Cargo.lock
emilk Mar 22, 2023
8f548a1
update to include high resolution depths/frames
pablovela5620 Mar 23, 2023
73b4328
add initial 3d -> 2d bbox projection (not working)
pablovela5620 Mar 23, 2023
eac3b4b
add comments to functions
pablovela5620 Mar 23, 2023
8980ad2
Merge branch 'main' into pablovela5620/arkitscenes
emilk Mar 23, 2023
9e51be4
Merge branch 'main' into pablovela5620/arkitscenes
emilk Mar 23, 2023
9615553
Log mesh vertex colors
emilk Mar 23, 2023
72fb1f4
Merge branch 'main' into pablovela5620/arkitscenes
emilk Mar 23, 2023
206665f
working 3d -> 2d bbox projection
pablovela5620 Mar 23, 2023
57a2309
add line segments in 2d
pablovela5620 Mar 23, 2023
53e8dc9
fix obb orientation
pablovela5620 Mar 23, 2023
a2d68ff
clean up code, fix linter, only log img with traj
pablovela5620 Mar 24, 2023
17875c7
small comments fix
pablovela5620 Mar 24, 2023
76f1b98
change object id -> uid for when multiple objects
pablovela5620 Mar 24, 2023
b16c70f
additional comments on projection function
pablovela5620 Mar 24, 2023
37113ac
add filter for reproj for objects behind the cam
pablovela5620 Mar 24, 2023
9668c9f
consistent colors between obb and projected bboxes
pablovela5620 Mar 24, 2023
069e2cf
log 2d labels, clean up
pablovela5620 Mar 26, 2023
0788a40
spellcheck fixes
pablovela5620 Mar 26, 2023
1deced8
linter fixes
pablovela5620 Mar 28, 2023
8a32813
group things to more easily remove
pablovela5620 Mar 28, 2023
c48dbd0
accurate argparse description
pablovela5620 Mar 28, 2023
d115c97
remove todo
pablovela5620 Mar 28, 2023
8262e65
comments why we return in log_annotated_bboxes
pablovela5620 Mar 28, 2023
ed4df39
add todos for removing once #1581
pablovela5620 Mar 28, 2023
a9a67d2
linter fix
pablovela5620 Mar 28, 2023
0e68ddb
clear centroid labels when out of frame
pablovela5620 Mar 28, 2023
48c7cad
Merge branch 'main' into pablovela5620/arkitscenes
pablovela5620 Mar 28, 2023
318866a
combine comments and clean up color hack
pablovela5620 Mar 28, 2023
025903a
include flag for high resolution images/depths
pablovela5620 Mar 30, 2023
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions examples/python/arkitscenes/.gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
dataset/**
321 changes: 321 additions & 0 deletions examples/python/arkitscenes/download_dataset.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,321 @@
# Copied from https://github.com/apple/ARKitScenes/blob/main/download_data.py
# Licensing information: https://github.com/apple/ARKitScenes/blob/main/LICENSE
pablovela5620 marked this conversation as resolved.
Show resolved Hide resolved
import math
import os
import subprocess
from pathlib import Path
from typing import Final, List, Optional

import pandas as pd

ARkitscense_url = "https://docs-assets.developer.apple.com/ml-research/datasets/arkitscenes/v1"
TRAINING: Final = "Training"
VALIDATION: Final = "Validation"
HIGRES_DEPTH_ASSET_NAME: Final = "highres_depth"
POINT_CLOUDS_FOLDER: Final = "laser_scanner_point_clouds"

AVAILABLE_RECORDINGS: Final = ["48458663", "42444949", "41069046", "41125722", "41125763", "42446167"]
DATASET_DIR: Final = Path(os.path.dirname(__file__)) / "dataset"

default_raw_dataset_assets = [
"mov",
"annotation",
"mesh",
"confidence",
"highres_depth",
"lowres_depth",
"lowres_wide.traj",
"lowres_wide",
"lowres_wide_intrinsics",
"ultrawide",
"ultrawide_intrinsics",
"vga_wide",
"vga_wide_intrinsics",
]

missing_3dod_assets_video_ids = [
"47334522",
"47334523",
"42897421",
"45261582",
"47333152",
"47333155",
"48458535",
"48018733",
"47429677",
"48458541",
"42897848",
"47895482",
"47333960",
"47430089",
"42899148",
"42897612",
"42899153",
"42446164",
"48018149",
"47332198",
"47334515",
"45663223",
"45663226",
"45663227",
]


def raw_files(video_id: str, assets: List[str], metadata: pd.DataFrame) -> List[str]:
file_names = []
for asset in assets:
if HIGRES_DEPTH_ASSET_NAME == asset:
in_upsampling = metadata.loc[metadata["video_id"] == float(video_id), ["is_in_upsampling"]].iat[0, 0]
if not in_upsampling:
print(f"Skipping asset {asset} for video_id {video_id} - Video not in upsampling dataset")
continue # highres_depth asset only available for video ids from upsampling dataset

if asset in [
"confidence",
"highres_depth",
"lowres_depth",
"lowres_wide",
"lowres_wide_intrinsics",
"ultrawide",
"ultrawide_intrinsics",
"wide",
"wide_intrinsics",
"vga_wide",
"vga_wide_intrinsics",
]:
file_names.append(asset + ".zip")
elif asset == "mov":
file_names.append(f"{video_id}.mov")
elif asset == "mesh":
if video_id not in missing_3dod_assets_video_ids:
file_names.append(f"{video_id}_3dod_mesh.ply")
elif asset == "annotation":
if video_id not in missing_3dod_assets_video_ids:
file_names.append(f"{video_id}_3dod_annotation.json")
elif asset == "lowres_wide.traj":
if video_id not in missing_3dod_assets_video_ids:
file_names.append("lowres_wide.traj")
else:
raise Exception(f"No asset = {asset} in raw dataset")
return file_names


def download_file(url: str, file_name: str, dst: Path) -> bool:
os.makedirs(dst, exist_ok=True)
filepath = os.path.join(dst, file_name)

if not os.path.isfile(filepath):
command = f"curl {url} -o {file_name}.tmp --fail"
print(f"Downloading file {filepath}")
try:
subprocess.check_call(command, shell=True, cwd=dst)
except Exception as error:
print(f"Error downloading {url}, error: {error}")
return False
os.rename(filepath + ".tmp", filepath)
else:
print(f"WARNING: skipping download of existing file: {filepath}")
return True


def unzip_file(file_name: str, dst: Path, keep_zip: bool = True) -> bool:
filepath = os.path.join(dst, file_name)
print(f"Unzipping zip file {filepath}")
command = f"unzip -oq {filepath} -d {dst}"
try:
subprocess.check_call(command, shell=True)
except Exception as error:
print(f"Error unzipping {filepath}, error: {error}")
return False
if not keep_zip:
os.remove(filepath)
return True


def download_laser_scanner_point_clouds_for_video(video_id: str, metadata: pd.DataFrame, download_dir: Path) -> None:
video_metadata = metadata.loc[metadata["video_id"] == float(video_id)]
visit_id = video_metadata["visit_id"].iat[0]
has_laser_scanner_point_clouds = video_metadata["has_laser_scanner_point_clouds"].iat[0]

if not has_laser_scanner_point_clouds:
print(f"Warning: Laser scanner point clouds for video {video_id} are not available")
return

if math.isnan(visit_id) or not visit_id.is_integer():
print(f"Warning: Downloading laser scanner point clouds for video {video_id} failed - Bad visit id {visit_id}")
return

visit_id = int(visit_id) # Expecting an 8 digit integer
laser_scanner_point_clouds_ids = laser_scanner_point_clouds_for_visit_id(visit_id, download_dir)

for point_cloud_id in laser_scanner_point_clouds_ids:
download_laser_scanner_point_clouds(point_cloud_id, visit_id, download_dir)


def laser_scanner_point_clouds_for_visit_id(visit_id: int, download_dir: Path) -> List[str]:
point_cloud_to_visit_id_mapping_filename = "laser_scanner_point_clouds_mapping.csv"
if not os.path.exists(point_cloud_to_visit_id_mapping_filename):
point_cloud_to_visit_id_mapping_url = (
f"{ARkitscense_url}/raw/laser_scanner_point_clouds/{point_cloud_to_visit_id_mapping_filename}"
)
if not download_file(
point_cloud_to_visit_id_mapping_url,
point_cloud_to_visit_id_mapping_filename,
download_dir,
):
print(
f"Error downloading point cloud for visit_id {visit_id} at location "
f"{point_cloud_to_visit_id_mapping_url}"
)
return []

point_cloud_to_visit_id_mapping_filepath = os.path.join(download_dir, point_cloud_to_visit_id_mapping_filename)
point_cloud_to_visit_id_mapping = pd.read_csv(point_cloud_to_visit_id_mapping_filepath)
point_cloud_ids = point_cloud_to_visit_id_mapping.loc[
point_cloud_to_visit_id_mapping["visit_id"] == visit_id,
["laser_scanner_point_clouds_id"],
]
point_cloud_ids_list = [scan_id[0] for scan_id in point_cloud_ids.values]

return point_cloud_ids_list


def download_laser_scanner_point_clouds(laser_scanner_point_cloud_id: str, visit_id: int, download_dir: Path) -> None:
laser_scanner_point_clouds_folder_path = download_dir / POINT_CLOUDS_FOLDER / str(visit_id)
os.makedirs(laser_scanner_point_clouds_folder_path, exist_ok=True)

for extension in [".ply", "_pose.txt"]:
filename = f"{laser_scanner_point_cloud_id}{extension}"
filepath = os.path.join(laser_scanner_point_clouds_folder_path, filename)
if os.path.exists(filepath):
return
file_url = f"{ARkitscense_url}/raw/laser_scanner_point_clouds/{visit_id}/{filename}"
download_file(file_url, filename, laser_scanner_point_clouds_folder_path)


def get_metadata(dataset: str, download_dir: Path) -> pd.DataFrame:
filename = "metadata.csv"
url = f"{ARkitscense_url}/threedod/{filename}" if "3dod" == dataset else f"{ARkitscense_url}/{dataset}/{filename}"
dst_folder = download_dir / dataset
dst_file = dst_folder / filename

if not download_file(url, filename, dst_folder):
return

metadata = pd.read_csv(dst_file)
return metadata


def download_data(
dataset: str,
video_ids: List[str],
dataset_splits: List[str],
download_dir: Path,
keep_zip: bool,
raw_dataset_assets: Optional[List[str]] = None,
should_download_laser_scanner_point_cloud: bool = False,
) -> None:
"""
Downloads data from the specified dataset and video IDs to the given download directory.
Args:
----
dataset: the name of the dataset to download from (raw, 3dod, or upsampling)
video_ids: the list of video IDs to download data for
dataset_splits: the list of splits for each video ID (train, validation, or test)
download_dir: the directory to download data to
keep_zip: whether to keep the downloaded zip files after extracting them
raw_dataset_assets: a list of asset types to download from the raw dataset, if dataset is "raw"
should_download_laser_scanner_point_cloud: whether to download the laser scanner point cloud data, if available
Returns: None
"""
metadata = get_metadata(dataset, download_dir)
if None is metadata:
print(f"Error retrieving metadata for dataset {dataset}")
return

for video_id in sorted(set(video_ids)):
split = dataset_splits[video_ids.index(video_id)]
dst_dir = download_dir / dataset / split
if dataset == "raw":
url_prefix = ""
file_names = []
if not raw_dataset_assets:
print(f"Warning: No raw assets given for video id {video_id}")
else:
dst_dir = dst_dir / str(video_id)
url_prefix = f"{ARkitscense_url}/raw/{split}/{video_id}" + "/{}"
file_names = raw_files(video_id, raw_dataset_assets, metadata)
elif dataset == "3dod":
url_prefix = f"{ARkitscense_url}/threedod/{split}" + "/{}"
file_names = [
f"{video_id}.zip",
]
elif dataset == "upsampling":
url_prefix = f"{ARkitscense_url}/upsampling/{split}" + "/{}"
file_names = [
f"{video_id}.zip",
]
else:
raise Exception(f"No such dataset = {dataset}")

if should_download_laser_scanner_point_cloud and dataset == "raw":
# Point clouds only available for the raw dataset
download_laser_scanner_point_clouds_for_video(video_id, metadata, download_dir)

for file_name in file_names:
dst_path = os.path.join(dst_dir, file_name)
url = url_prefix.format(file_name)

if not file_name.endswith(".zip") or not os.path.isdir(dst_path[: -len(".zip")]):
download_file(url, dst_path, dst_dir)
else:
print(f"WARNING: skipping download of existing zip file: {dst_path}")
if file_name.endswith(".zip") and os.path.isfile(dst_path):
unzip_file(file_name, dst_dir, keep_zip)


def ensure_recording_downloaded(video_id: str, include_highres: bool) -> Path:
"""Only downloads from validation set."""
data_path = DATASET_DIR / "raw" / "Validation" / video_id
assets_to_download = [
"lowres_wide",
"lowres_depth",
"lowres_wide_intrinsics",
"lowres_wide.traj",
"annotation",
"mesh",
]
if include_highres:
assets_to_download.extend(["highres_depth", "wide", "wide_intrinsics"])
download_data(
dataset="raw",
video_ids=[video_id],
dataset_splits=[VALIDATION],
download_dir=DATASET_DIR,
keep_zip=False,
raw_dataset_assets=assets_to_download,
should_download_laser_scanner_point_cloud=False,
)
return data_path


def ensure_recording_available(video_id: str, include_highres: bool) -> Path:
"""
Returns the path to the recording for a given video_id.
Args:
video_id (str): Identifier for the recording.
Returns
-------
Path: Path object representing the path to the recording.
Raises
------
AssertionError: If the recording path does not exist.
"""
recording_path = ensure_recording_downloaded(video_id, include_highres)
assert recording_path.exists(), f"Recording path {recording_path} does not exist."
return recording_path # Return the path to the recording
Loading