Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Float8Linear does not support autocast #568

Open
vkuzo opened this issue Jul 30, 2024 · 0 comments
Open

Float8Linear does not support autocast #568

vkuzo opened this issue Jul 30, 2024 · 0 comments
Labels

Comments

@vkuzo
Copy link
Contributor

vkuzo commented Jul 30, 2024

from @yitzhaklevi

The issue is caused due to the fact that Float8Linear captures the input dtype (via -> https://github.com/pytorch-labs/float8_experimental/blob/main/float8_experimental/float8_linear.py#L303) , And later we have this assert (during sync_float8_amax_and_scale_history - https://github.com/pytorch-labs/float8_experimental/blob/main/float8_experimental/float8_linear_utils.py#L247) that causes the failure.

One trivial solution would be to use https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.custom_fwd (with cast_inputs=torch.get_autocast_gpu_dtype())

The following script reproduces the issue (run without args) and the trivial solution (add --wrap_linear_layer)

import torch
from float8_experimental.float8_linear_utils import (
    sync_float8_amax_and_scale_history,
)
from float8_experimental.float8_linear_utils import (
    swap_linear_with_float8_linear
)
from float8_experimental.float8_linear import Float8Linear as BaseFloat8Linear
from torch import get_autocast_gpu_dtype
from torch.cuda.amp import custom_fwd
import argparse


def get_args():
    p = argparse.ArgumentParser()
    p.add_argument('--wrap_linear_layer', dest="wrap_linear_layer", action="store_true")
    return p.parse_args()


class SimpleModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.l1 = torch.nn.Linear(16, 16)
        self.l2 = torch.nn.Linear(16, 32)
        # norm layer is just an example - but can be any layer that outputs float32 regardless of autocast settings
        self.norm_layer = torch.nn.LayerNorm(32) 
        self.l3 = torch.nn.Linear(32, 16)

    def forward(self, x):
        # x is still float32
        x = self.l1(x)
        # x is now bfloat16
        x = self.l2(x)
        # x is still bfloat16
        x = self.norm_layer(x)
        # x is now float32 (since the output of norm layer is float32 regardless of autocast settings)
        x = self.l3(x)
        # x is now bfloat16
        return x


if __name__ == '__main__':
    args = get_args()
    m = SimpleModel().to('cuda')
    if args.wrap_linear_layer:
        class Float8Linear(BaseFloat8Linear):
            @custom_fwd(cast_inputs=get_autocast_gpu_dtype())
            def forward(self, *args, **kwargs):
                return super().forward(*args, **kwargs)
    else:
        Float8Linear = BaseFloat8Linear

    swap_linear_with_float8_linear(m, Float8Linear)
    b = torch.rand([17, 16]).to('cuda')
    with torch.amp.autocast(enabled=True, device_type='cuda', dtype=torch.bfloat16):
        out = m(b)
        sync_float8_amax_and_scale_history(m)
    print('Done !')

copied from pytorch-labs/float8_experimental#257

@vkuzo vkuzo added the float8 label Jul 30, 2024
yanbing-j pushed a commit to yanbing-j/ao that referenced this issue Dec 9, 2024
* perform parallel prefill when possible

* typo

* disable hack

* remove print

* remove debug messages which prevent export

* fixes
yanbing-j pushed a commit to yanbing-j/ao that referenced this issue Dec 9, 2024
* code beautification

* code beautification, move functions together

* make --device fast the default (pytorch#515)

* make --device fast the default

* Update iOS.md (pytorch#517)

* Update iOS.md

* Update iOS.md

* Pip to pip3 (pytorch#504)

* remove macos-12 test

* pip to pip3

* break aoti CI jobs separately (pytorch#500)

* init

* fixes

* more fixes

* fixes

* fix

* fix

* bug fix

* add objcopy update

* suppress int8

* undefined variable

---------

Co-authored-by: Michael Gschwind <[email protected]>

* Support llama3 in chat in run.cpp  (pytorch#486)

* refactor chat runner in preparation for llama3

* add sketch for llama3 prompt template and move to returning tokens

* fix tiktoken

* fixes to chat

* add default llama_ver

* Add tests for quantize json, add cuda device specification and precision to cuda.json (pytorch#519)

* remove code for no KV Cache path (pytorch#527)

* Update ADVANCED-USERS.md (pytorch#529)

Update Advanced Users description to reflect changes in the repo since the description was initially created.

* runner-aoti on cuda (pytorch#531)

* runner-aoti on cuda

* transfer results back to CPU

* transfer results back to CPU

* runner-aoti on cuda

* Update runner_build.md (pytorch#530)

Update description of runner and build process in runner_build.md

* clean up runner code a little (pytorch#532)

* clean up runner code a little

* update

* update

* pull out generate loop in chat

* updates

* edit docs

* typo

* move int8 linear class and function into qops.py (pytorch#534)

* add dtype tests for runner-aoti + runner-et (pytorch#539)

* add dtype tests for runner-aoti + runner-et

* typo

* Quantized embedding (pytorch#536)

* move int8 linear class and function into qops.py

* move Quantized Embedding to qops.py

* Move Linear int4 to qops (pytorch#537)

* move int8 linear class and function into qops.py

* move Quantized Embedding to qops.py

* move int4 linear to qops

* Revert "add dtype tests for runner-aoti + runner-et (pytorch#539)" (pytorch#548)

This reverts commit a7a24577a65be67ac9ae4dc05452f35d9c49e5d1.

* fix generate for llama3 (pytorch#538)

* fix generate for llama3

* switch more things to C

* remove C++ header

* add delegation visualization instructions (pytorch#551)

* Add dtype runner aoti (pytorch#552)

* add dtype tests for runner-aoti + runner-et

* typo

* add dtype test runner-aoti

* test sdpa with fp16 (pytorch#553)

* test sdpa with fp16

* kv cache fp32

* typo

* update (pytorch#560)

* Only support newest versions of lm-eval (pytorch#556)

Summary:
remove support for lm-eval 0.3 to reduce the options we have

Test Plan:
CI

Reviewers:

Subscribers:

Tasks:

Tags:

* split cpu eval CI by dtype (pytorch#554)

* split cpu eval CI by dtype

* fix

* differentiate names with checks

* keep one name the same as old

* fix

* Removing duplicate HF issue message from README (pytorch#559)

Co-authored-by: Michael Gschwind <[email protected]>

* doc updates (pytorch#567)

* Add VM-safe MPS check

---------

Co-authored-by: Anthony Shoumikhin <[email protected]>
Co-authored-by: metascroy <[email protected]>
Co-authored-by: Nikita Shulga <[email protected]>
Co-authored-by: lucylq <[email protected]>
Co-authored-by: Jerry Zhang <[email protected]>
Co-authored-by: Jack-Khuu <[email protected]>

* add unpacking support (pytorch#525)

* add unpacking support

* fix typos and linter

* perform parallel prefill when possible (pytorch#568)

* perform parallel prefill when possible

* typo

* disable hack

* remove print

* remove debug messages which prevent export

* fixes

* stream results in generate.py (#571)

* remove logging interfering with export

---------

Co-authored-by: Anthony Shoumikhin <[email protected]>
Co-authored-by: metascroy <[email protected]>
Co-authored-by: Nikita Shulga <[email protected]>
Co-authored-by: lucylq <[email protected]>
Co-authored-by: Jerry Zhang <[email protected]>
Co-authored-by: Jack-Khuu <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

1 participant