-
Notifications
You must be signed in to change notification settings - Fork 185
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
KV cache quantization back of the envelope calculations #539
Comments
yanbing-j
pushed a commit
to yanbing-j/ao
that referenced
this issue
Dec 9, 2024
* add dtype tests for runner-aoti + runner-et * typo
yanbing-j
pushed a commit
to yanbing-j/ao
that referenced
this issue
Dec 9, 2024
…ytorch#548) This reverts commit a7a24577a65be67ac9ae4dc05452f35d9c49e5d1.
yanbing-j
pushed a commit
to yanbing-j/ao
that referenced
this issue
Dec 9, 2024
* make --device fast the default * Update iOS.md (pytorch#517) * Update iOS.md * Update iOS.md * Pip to pip3 (pytorch#504) * remove macos-12 test * pip to pip3 * break aoti CI jobs separately (pytorch#500) * init * fixes * more fixes * fixes * fix * fix * bug fix * add objcopy update * suppress int8 * undefined variable --------- Co-authored-by: Michael Gschwind <[email protected]> * Support llama3 in chat in run.cpp (pytorch#486) * refactor chat runner in preparation for llama3 * add sketch for llama3 prompt template and move to returning tokens * fix tiktoken * fixes to chat * add default llama_ver * Add tests for quantize json, add cuda device specification and precision to cuda.json (pytorch#519) * remove code for no KV Cache path (pytorch#527) * Update ADVANCED-USERS.md (pytorch#529) Update Advanced Users description to reflect changes in the repo since the description was initially created. * runner-aoti on cuda (pytorch#531) * runner-aoti on cuda * transfer results back to CPU * transfer results back to CPU * runner-aoti on cuda * Update runner_build.md (pytorch#530) Update description of runner and build process in runner_build.md * clean up runner code a little (pytorch#532) * clean up runner code a little * update * update * pull out generate loop in chat * updates * edit docs * typo * move int8 linear class and function into qops.py (pytorch#534) * add dtype tests for runner-aoti + runner-et (pytorch#539) * add dtype tests for runner-aoti + runner-et * typo * Quantized embedding (pytorch#536) * move int8 linear class and function into qops.py * move Quantized Embedding to qops.py * Move Linear int4 to qops (pytorch#537) * move int8 linear class and function into qops.py * move Quantized Embedding to qops.py * move int4 linear to qops * Revert "add dtype tests for runner-aoti + runner-et (pytorch#539)" (pytorch#548) This reverts commit a7a24577a65be67ac9ae4dc05452f35d9c49e5d1. * fix generate for llama3 (pytorch#538) * fix generate for llama3 * switch more things to C * remove C++ header * add delegation visualization instructions (pytorch#551) * Add dtype runner aoti (pytorch#552) * add dtype tests for runner-aoti + runner-et * typo * add dtype test runner-aoti * test sdpa with fp16 (pytorch#553) * test sdpa with fp16 * kv cache fp32 * typo * update (pytorch#560) * Only support newest versions of lm-eval (pytorch#556) Summary: remove support for lm-eval 0.3 to reduce the options we have Test Plan: CI Reviewers: Subscribers: Tasks: Tags: * split cpu eval CI by dtype (pytorch#554) * split cpu eval CI by dtype * fix * differentiate names with checks * keep one name the same as old * fix * Removing duplicate HF issue message from README (pytorch#559) Co-authored-by: Michael Gschwind <[email protected]> * doc updates (pytorch#567) * Add VM-safe MPS check --------- Co-authored-by: Anthony Shoumikhin <[email protected]> Co-authored-by: metascroy <[email protected]> Co-authored-by: Nikita Shulga <[email protected]> Co-authored-by: lucylq <[email protected]> Co-authored-by: Jerry Zhang <[email protected]> Co-authored-by: Jack-Khuu <[email protected]>
yanbing-j
pushed a commit
to yanbing-j/ao
that referenced
this issue
Dec 9, 2024
* code beautification * code beautification, move functions together * make --device fast the default (pytorch#515) * make --device fast the default * Update iOS.md (pytorch#517) * Update iOS.md * Update iOS.md * Pip to pip3 (pytorch#504) * remove macos-12 test * pip to pip3 * break aoti CI jobs separately (pytorch#500) * init * fixes * more fixes * fixes * fix * fix * bug fix * add objcopy update * suppress int8 * undefined variable --------- Co-authored-by: Michael Gschwind <[email protected]> * Support llama3 in chat in run.cpp (pytorch#486) * refactor chat runner in preparation for llama3 * add sketch for llama3 prompt template and move to returning tokens * fix tiktoken * fixes to chat * add default llama_ver * Add tests for quantize json, add cuda device specification and precision to cuda.json (pytorch#519) * remove code for no KV Cache path (pytorch#527) * Update ADVANCED-USERS.md (pytorch#529) Update Advanced Users description to reflect changes in the repo since the description was initially created. * runner-aoti on cuda (pytorch#531) * runner-aoti on cuda * transfer results back to CPU * transfer results back to CPU * runner-aoti on cuda * Update runner_build.md (pytorch#530) Update description of runner and build process in runner_build.md * clean up runner code a little (pytorch#532) * clean up runner code a little * update * update * pull out generate loop in chat * updates * edit docs * typo * move int8 linear class and function into qops.py (pytorch#534) * add dtype tests for runner-aoti + runner-et (pytorch#539) * add dtype tests for runner-aoti + runner-et * typo * Quantized embedding (pytorch#536) * move int8 linear class and function into qops.py * move Quantized Embedding to qops.py * Move Linear int4 to qops (pytorch#537) * move int8 linear class and function into qops.py * move Quantized Embedding to qops.py * move int4 linear to qops * Revert "add dtype tests for runner-aoti + runner-et (pytorch#539)" (pytorch#548) This reverts commit a7a24577a65be67ac9ae4dc05452f35d9c49e5d1. * fix generate for llama3 (pytorch#538) * fix generate for llama3 * switch more things to C * remove C++ header * add delegation visualization instructions (pytorch#551) * Add dtype runner aoti (pytorch#552) * add dtype tests for runner-aoti + runner-et * typo * add dtype test runner-aoti * test sdpa with fp16 (pytorch#553) * test sdpa with fp16 * kv cache fp32 * typo * update (pytorch#560) * Only support newest versions of lm-eval (pytorch#556) Summary: remove support for lm-eval 0.3 to reduce the options we have Test Plan: CI Reviewers: Subscribers: Tasks: Tags: * split cpu eval CI by dtype (pytorch#554) * split cpu eval CI by dtype * fix * differentiate names with checks * keep one name the same as old * fix * Removing duplicate HF issue message from README (pytorch#559) Co-authored-by: Michael Gschwind <[email protected]> * doc updates (pytorch#567) * Add VM-safe MPS check --------- Co-authored-by: Anthony Shoumikhin <[email protected]> Co-authored-by: metascroy <[email protected]> Co-authored-by: Nikita Shulga <[email protected]> Co-authored-by: lucylq <[email protected]> Co-authored-by: Jerry Zhang <[email protected]> Co-authored-by: Jack-Khuu <[email protected]> * add unpacking support (pytorch#525) * add unpacking support * fix typos and linter * perform parallel prefill when possible (pytorch#568) * perform parallel prefill when possible * typo * disable hack * remove print * remove debug messages which prevent export * fixes * stream results in generate.py (pytorch#571) * remove logging interfering with export --------- Co-authored-by: Anthony Shoumikhin <[email protected]> Co-authored-by: metascroy <[email protected]> Co-authored-by: Nikita Shulga <[email protected]> Co-authored-by: lucylq <[email protected]> Co-authored-by: Jerry Zhang <[email protected]> Co-authored-by: Jack-Khuu <[email protected]>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Recently got interested in how to run Llama3 inferences with large context lengths like 128K. For context Llama2 had a max sequence length of 4096. One solution that always works is to go distributed with techniques like Ring Attention where you split the sequence over multiple devices but instead I'm interested in how to run large context windows on a single GPU.
For larger sequence lengths the primary VRAM bottleneck is not the model parameters but the size of the KV cache which has an analytical formula of: 2 * layers * attention heads * head_dim * byte_per_element * batch_size * sequence_length and the model param has a simple formula of number_of_param * byte_per_element
So what I plotted below was the model params + KV cache size as I increased the sequence length
A few things jump out
The second plot was the exact same thing with Llama70B
At this size
A few important caveats
The text was updated successfully, but these errors were encountered: