Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

copy the dtypes module to the namedarray package. #8250

Merged
merged 18 commits into from
Oct 4, 2023
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
195 changes: 195 additions & 0 deletions xarray/namedarray/dtypes.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,195 @@
from __future__ import annotations

import functools
from typing import Any

import numpy as np

from xarray.core import utils
andersy005 marked this conversation as resolved.
Show resolved Hide resolved

# Use as a sentinel value to indicate a dtype appropriate NA value.
NA = utils.ReprObject("<NA>")


@functools.total_ordering
class AlwaysGreaterThan:
def __gt__(self, other):
andersy005 marked this conversation as resolved.
Show resolved Hide resolved
return True

def __eq__(self, other):
andersy005 marked this conversation as resolved.
Show resolved Hide resolved
return isinstance(other, type(self))


@functools.total_ordering
class AlwaysLessThan:
def __lt__(self, other):
andersy005 marked this conversation as resolved.
Show resolved Hide resolved
return True

def __eq__(self, other):
andersy005 marked this conversation as resolved.
Show resolved Hide resolved
return isinstance(other, type(self))


# Equivalence to np.inf (-np.inf) for object-type
INF = AlwaysGreaterThan()
NINF = AlwaysLessThan()


# Pairs of types that, if both found, should be promoted to object dtype
# instead of following NumPy's own type-promotion rules. These type promotion
# rules match pandas instead. For reference, see the NumPy type hierarchy:
# https://numpy.org/doc/stable/reference/arrays.scalars.html
PROMOTE_TO_OBJECT: tuple[tuple[type[np.generic], type[np.generic]], ...] = (
(np.number, np.character), # numpy promotes to character
(np.bool_, np.character), # numpy promotes to character
(np.bytes_, np.str_), # numpy promotes to unicode
)


def maybe_promote(dtype: np.dtype) -> tuple[np.dtype, Any]:
"""Simpler equivalent of pandas.core.common._maybe_promote

Parameters
----------
dtype : np.dtype

Returns
-------
dtype : Promoted dtype that can hold missing values.
fill_value : Valid missing value for the promoted dtype.
"""
# N.B. these casting rules should match pandas
dtype_: np.typing.DTypeLike
fill_value: Any
if np.issubdtype(dtype, np.floating):
dtype_ = dtype
fill_value = np.nan
elif np.issubdtype(dtype, np.timedelta64):
# See https://github.com/numpy/numpy/issues/10685
# np.timedelta64 is a subclass of np.integer
# Check np.timedelta64 before np.integer
fill_value = np.timedelta64("NaT")
dtype_ = dtype
elif np.issubdtype(dtype, np.integer):
dtype_ = np.float32 if dtype.itemsize <= 2 else np.float64
fill_value = np.nan
elif np.issubdtype(dtype, np.complexfloating):
dtype_ = dtype
fill_value = np.nan + np.nan * 1j
elif np.issubdtype(dtype, np.datetime64):
dtype_ = dtype
fill_value = np.datetime64("NaT")
else:
dtype_ = object
fill_value = np.nan

dtype_out = np.dtype(dtype_)
fill_value = dtype_out.type(fill_value)
return dtype_out, fill_value


NAT_TYPES = {np.datetime64("NaT").dtype, np.timedelta64("NaT").dtype}


def get_fill_value(dtype):
andersy005 marked this conversation as resolved.
Show resolved Hide resolved
"""Return an appropriate fill value for this dtype.

Parameters
----------
dtype : np.dtype

Returns
-------
fill_value : Missing value corresponding to this dtype.
"""
_, fill_value = maybe_promote(dtype)
return fill_value


def get_pos_infinity(dtype, max_for_int=False):
andersy005 marked this conversation as resolved.
Show resolved Hide resolved
"""Return an appropriate positive infinity for this dtype.

Parameters
----------
dtype : np.dtype
max_for_int : bool
Return np.iinfo(dtype).max instead of np.inf

Returns
-------
fill_value : positive infinity value corresponding to this dtype.
"""
if issubclass(dtype.type, np.floating):
return np.inf

if issubclass(dtype.type, np.integer):
if max_for_int:
return np.iinfo(dtype).max
else:
return np.inf

if issubclass(dtype.type, np.complexfloating):
return np.inf + 1j * np.inf

return INF


def get_neg_infinity(dtype, min_for_int=False):
andersy005 marked this conversation as resolved.
Show resolved Hide resolved
"""Return an appropriate positive infinity for this dtype.

Parameters
----------
dtype : np.dtype
min_for_int : bool
Return np.iinfo(dtype).min instead of -np.inf

Returns
-------
fill_value : positive infinity value corresponding to this dtype.
"""
if issubclass(dtype.type, np.floating):
return -np.inf

if issubclass(dtype.type, np.integer):
if min_for_int:
return np.iinfo(dtype).min
else:
return -np.inf

if issubclass(dtype.type, np.complexfloating):
return -np.inf - 1j * np.inf

return NINF


def is_datetime_like(dtype):
andersy005 marked this conversation as resolved.
Show resolved Hide resolved
"""Check if a dtype is a subclass of the numpy datetime types"""
return np.issubdtype(dtype, np.datetime64) or np.issubdtype(dtype, np.timedelta64)


def result_type(
*arrays_and_dtypes: np.typing.ArrayLike | np.typing.DTypeLike,
) -> np.dtype:
"""Like np.result_type, but with type promotion rules matching pandas.

Examples of changed behavior:
number + string -> object (not string)
bytes + unicode -> object (not unicode)

Parameters
----------
*arrays_and_dtypes : list of arrays and dtypes
The dtype is extracted from both numpy and dask arrays.

Returns
-------
numpy.dtype for the result.
"""
types = {np.result_type(t).type for t in arrays_and_dtypes}

for left, right in PROMOTE_TO_OBJECT:
if any(issubclass(t, left) for t in types) and any(
issubclass(t, right) for t in types
):
return np.dtype(object)

return np.result_type(*arrays_and_dtypes)
23 changes: 23 additions & 0 deletions xarray/namedarray/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,3 +66,26 @@ def to_0d_object_array(value: typing.Any) -> np.ndarray:
result = np.empty((), dtype=object)
result[()] = value
return result


class ReprObject:
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This one is not considered np.typing.ArrayLike, therefore I don't like it. Is it possible to avoid it?

Example error from #8211:

 xarray/core/dataarray.py: note: In member "__init__" of class "DataArray":
xarray/core/dataarray.py:414: error: Incompatible default for argument "data" (default has type "ReprObject", argument has type "T_DuckArray | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes]")  [assignment]

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I don't see why the constructor has a default value of "NA"

"""Object that prints as the given value, for use with sentinel values."""

__slots__ = ("_value",)

def __init__(self, value: str):
self._value = value

def __repr__(self) -> str:
return self._value

def __eq__(self, other) -> bool:
return self._value == other._value if isinstance(other, ReprObject) else False

def __hash__(self) -> int:
return hash((type(self), self._value))

def __dask_tokenize__(self):
from dask.base import normalize_token

return normalize_token((type(self), self._value))