Skip to content

[ECCV 2020] Learning Where to Focus for Efficient Video Object Detection

Notifications You must be signed in to change notification settings

pistachio0812/LSTS

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Learning Where to Focus for Efficient Video Object Detection

image Paper Project Page

Installation

  1. Clone this repository.
git clone https://github.com/jiangzhengkai/LSTS.git
  1. Run sh ./init.sh. The scripts will build cython module automatically and create some folders.

  2. Install MXNet:

    3.1 Clone MXNet and checkout to MXNet@(commit 62ecb60) by

    git clone --recursive https://github.com/dmlc/mxnet.git
    git checkout 62ecb60
    git submodule update
    

    3.2 Copy operators in lib/ops/* to $(YOUR_MXNET_FOLDER)/src/operator/contrib by

    cp -r lib/ops/* $(MXNET_ROOT)/src/operator/contrib/
    

    3.3 Compile MXNet

    cd ${MXNET_ROOT}
    make -j4
    

    3.4 Install the MXNet Python binding by

    cd python
    sudo python setup.py install
    

Preparation for Training & Testing

  1. Please download ILSVRC2015 DET and ILSVRC2015 VID dataset, and make sure it looks like this:

    ./data/ILSVRC2015/
    ./data/ILSVRC2015/Annotations/DET
    ./data/ILSVRC2015/Annotations/VID
    ./data/ILSVRC2015/Data/DET
    ./data/ILSVRC2015/Data/VID
    ./data/ILSVRC2015/ImageSets
    
  2. Please download ImageNet pre-trained ResNet-v1-101 model and Flying-Chairs pre-trained FlowNet model manually from OneDrive (for users from Mainland China, please try Baidu Yun), and put it under folder ./model. Make sure it looks like this:

    ./model/pretrained_model/resnet_v1_101-0000.params
    ./model/pretrained_model/flownet-0000.params
    

Usage

  1. All of our experiment settings (GPU #, dataset, etc.) are kept in yaml config files at folder ./experiments/lsts/cfgs.
  2. To perform experiments, run the python script with the corresponding config file as input.
    python experiments/lsts/lsts_end2end_train_test.py --cfg experiments/lsts_rfcn/cfgs/lsts_network_uniform.yaml
    

Bibtex

@inproceedings{jiang2020learning,
  title={Learning Where to Focus for Efficient Video Object Detection},
  author={Jiang, Zhengkai and Liu, Yu and Yang, Ceyuan and Liu, Jihao and Gao, Peng and Zhang, Qian and Xiang, Shiming and Pan, Chunhong},
  booktitle={European Conference on Computer Vision},
  year={2020},
}

About

[ECCV 2020] Learning Where to Focus for Efficient Video Object Detection

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 63.1%
  • Cuda 32.3%
  • C++ 4.6%