- Clone this repository.
git clone https://github.com/jiangzhengkai/LSTS.git
-
Run
sh ./init.sh
. The scripts will build cython module automatically and create some folders. -
Install MXNet:
3.1 Clone MXNet and checkout to MXNet@(commit 62ecb60) by
git clone --recursive https://github.com/dmlc/mxnet.git git checkout 62ecb60 git submodule update
3.2 Copy operators in
lib/ops/*
to$(YOUR_MXNET_FOLDER)/src/operator/contrib
bycp -r lib/ops/* $(MXNET_ROOT)/src/operator/contrib/
3.3 Compile MXNet
cd ${MXNET_ROOT} make -j4
3.4 Install the MXNet Python binding by
cd python sudo python setup.py install
-
Please download ILSVRC2015 DET and ILSVRC2015 VID dataset, and make sure it looks like this:
./data/ILSVRC2015/ ./data/ILSVRC2015/Annotations/DET ./data/ILSVRC2015/Annotations/VID ./data/ILSVRC2015/Data/DET ./data/ILSVRC2015/Data/VID ./data/ILSVRC2015/ImageSets
-
Please download ImageNet pre-trained ResNet-v1-101 model and Flying-Chairs pre-trained FlowNet model manually from OneDrive (for users from Mainland China, please try Baidu Yun), and put it under folder
./model
. Make sure it looks like this:./model/pretrained_model/resnet_v1_101-0000.params ./model/pretrained_model/flownet-0000.params
- All of our experiment settings (GPU #, dataset, etc.) are kept in yaml config files at folder
./experiments/lsts/cfgs
. - To perform experiments, run the python script with the corresponding config file as input.
python experiments/lsts/lsts_end2end_train_test.py --cfg experiments/lsts_rfcn/cfgs/lsts_network_uniform.yaml
@inproceedings{jiang2020learning,
title={Learning Where to Focus for Efficient Video Object Detection},
author={Jiang, Zhengkai and Liu, Yu and Yang, Ceyuan and Liu, Jihao and Gao, Peng and Zhang, Qian and Xiang, Shiming and Pan, Chunhong},
booktitle={European Conference on Computer Vision},
year={2020},
}