-
-
Notifications
You must be signed in to change notification settings - Fork 18.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
ea3741b
commit fa2da60
Showing
2 changed files
with
174 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,168 @@ | ||
from typing import Literal | ||
|
||
import numpy as np | ||
|
||
def group_median_float64( | ||
out: np.ndarray, # ndarray[float64_t, ndim=2] | ||
counts: np.ndarray, # ndarray[int64_t] | ||
values: np.ndarray, # ndarray[float64_t, ndim=2] | ||
labels: np.ndarray, # ndarray[int64_t] | ||
min_count: int = ..., # Py_ssize_t | ||
) -> None: ... | ||
|
||
def group_cumprod_float64( | ||
out: np.ndarray, # float64_t[:, ::1] | ||
values: np.ndarray, # const float64_t[:, :] | ||
labels: np.ndarray, # const int64_t[:] | ||
ngroups: int, | ||
is_datetimelike: bool, | ||
skipna: bool = ..., | ||
) -> None: ... | ||
|
||
def group_cumsum( | ||
out: np.ndarray, # numeric[:, ::1] | ||
values: np.ndarray, # ndarray[numeric, ndim=2] | ||
labels: np.ndarray, # const int64_t[:] | ||
ngroups: int, | ||
is_datetimelike: bool, | ||
skipna: bool = ..., | ||
) -> None: ... | ||
|
||
|
||
def group_shift_indexer( | ||
out: np.ndarray, # int64_t[::1] | ||
labels: np.ndarray, # const int64_t[:] | ||
ngroups: int, | ||
periods: int, | ||
) -> None: ... | ||
|
||
|
||
def group_fillna_indexer( | ||
out: np.ndarray, # ndarray[int64_t] | ||
labels: np.ndarray, # ndarray[int64_t] | ||
mask: np.ndarray, # ndarray[uint8_t] | ||
direction: Literal["ffill", "bfill"], | ||
limit: int, # int64_t | ||
dropna: bool, | ||
) -> None: ... | ||
|
||
|
||
def group_any_all( | ||
out: np.ndarray, # uint8_t[::1] | ||
values: np.ndarray, # const uint8_t[::1] | ||
labels: np.ndarray, # const int64_t[:] | ||
mask: np.ndarray, # const uint8_t[::1] | ||
val_test: Literal["any", "all"], | ||
skipna: bool, | ||
) -> None: ... | ||
|
||
def group_add( | ||
out: np.ndarray, # complexfloating_t[:, ::1] | ||
counts: np.ndarray, # int64_t[::1] | ||
values: np.ndarray, # ndarray[complexfloating_t, ndim=2] | ||
labels: np.ndarray, # const intp_t[:] | ||
min_count: int = ... | ||
) -> None: ... | ||
|
||
def group_prod( | ||
out: np.ndarray, # floating[:, ::1] | ||
counts: np.ndarray, # int64_t[::1] | ||
values: np.ndarray, # ndarray[floating, ndim=2] | ||
labels: np.ndarray, # const intp_t[:] | ||
min_count: int = ... | ||
) -> None: ... | ||
|
||
def group_var( | ||
out: np.ndarray, # floating[:, ::1] | ||
counts: np.ndarray, # int64_t[::1] | ||
values: np.ndarray, # ndarray[floating, ndim=2] | ||
labels: np.ndarray, # const intp_t[:] | ||
min_count: int = ..., # Py_ssize_t | ||
ddof: int = ..., # int64_t | ||
) -> None: ... | ||
|
||
def group_mean( | ||
out: np.ndarray, # floating[:, ::1] | ||
counts: np.ndarray, # int64_t[::1] | ||
values: np.ndarray, # ndarray[floating, ndim=2] | ||
labels: np.ndarray, # const intp_t[:] | ||
min_count: int = ... | ||
) -> None: ... | ||
|
||
def group_ohlc( | ||
out: np.ndarray, # floating[:, ::1] | ||
counts: np.ndarray, # int64_t[::1] | ||
values: np.ndarray, # ndarray[floating, ndim=2] | ||
labels: np.ndarray, # const intp_t[:] | ||
min_count: int = ... | ||
) -> None: ... | ||
|
||
def group_quantile( | ||
out: np.ndarray, # ndarray[float64_t] | ||
values: np.ndarray, # ndarray[numeric, ndim=1] | ||
labels: np.ndarray, # ndarray[int64_t] | ||
mask: np.ndarray, # ndarray[uint8_t] | ||
q: float, # float64_t | ||
interpolation: Literal["linear", "lower", "higher", "nearest", "midpoint"], | ||
) -> None: ... | ||
|
||
def group_last( | ||
out: np.ndarray, # rank_t[:, ::1] | ||
counts: np.ndarray, # int64_t[::1] | ||
values: np.ndarray, # ndarray[rank_t, ndim=2] | ||
labels: np.ndarray, # const int64_t[:] | ||
min_count: int = ..., # Py_ssize_t | ||
) -> None: ... | ||
|
||
def group_nth( | ||
out: np.ndarray, # rank_t[:, ::1] | ||
counts: np.ndarray, # int64_t[::1] | ||
values: np.ndarray, # ndarray[rank_t, ndim=2] | ||
labels: np.ndarray, # const int64_t[:] | ||
min_count: int = ..., # int64_t | ||
rank: int = ..., # int64_t | ||
) -> None: ... | ||
|
||
def group_rank( | ||
out: np.ndarray, # float64_t[:, ::1] | ||
values: np.ndarray, # ndarray[rank_t, ndim=2] | ||
labels: np.ndarray, # const int64_t[:] | ||
ngroups: int, | ||
is_datetimelike: bool, | ||
ties_method: Literal["aveage", "min", "max", "first", "dense"] = ..., | ||
ascending: bool = ..., | ||
pct: bool = ..., | ||
na_option: Literal["keep", "top", "bottom"] = ..., | ||
) -> None: ... | ||
|
||
def group_max( | ||
out: np.ndarray, # groupby_t[:, ::1] | ||
counts: np.ndarray, # int64_t[::1] | ||
values: np.ndarray, # ndarray[groupby_t, ndim=2] | ||
labels: np.ndarray, # const int64_t[:] | ||
min_count: int = ..., | ||
) -> None: ... | ||
|
||
def group_min( | ||
out: np.ndarray, # groupby_t[:, ::1] | ||
counts: np.ndarray, # int64_t[::1] | ||
values: np.ndarray, # ndarray[groupby_t, ndim=2] | ||
labels: np.ndarray, # const int64_t[:] | ||
min_count: int = ..., | ||
) -> None: ... | ||
|
||
def group_cummin( | ||
out: np.ndarray, # groupby_t[:, ::1] | ||
values: np.ndarray, # ndarray[groupby_t, ndim=2] | ||
labels: np.ndarray, # const int64_t[:] | ||
ngroups: int, | ||
is_datetimelike: bool, | ||
) -> None: ... | ||
|
||
def group_cummax( | ||
out: np.ndarray, # groupby_t[:, ::1] | ||
values: np.ndarray, # ndarray[groupby_t, ndim=2] | ||
labels: np.ndarray, # const int64_t[:] | ||
ngroups: int, | ||
is_datetimelike: bool, | ||
) -> None: ... |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters