Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

improve image tensor conversions #151

Merged
merged 1 commit into from
Sep 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
94 changes: 48 additions & 46 deletions crates/kornia-core/src/storage.rs
Original file line number Diff line number Diff line change
Expand Up @@ -160,6 +160,54 @@ where
}
}

/// Creates a new `TensorStorage` from a slice of data.
///
/// # Arguments
///
/// * `data` - A slice containing the data to be stored.
/// * `alloc` - The allocator to use for creating the storage.
///
/// # Returns
///
/// A new `TensorStorage` instance containing a copy of the input data.
///
/// # Errors
///
/// Returns a `TensorAllocatorError` if the allocation fails.
pub fn from_slice(data: &[T], alloc: A) -> Self {
let buffer = Buffer::from_slice_ref(data);
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@emilmgeorge discovered this function, i thinks it still makes copy but we can explore later more safer ways to achieve zero copies. Another alternative could be to explore from_bytes https://docs.rs/arrow-buffer/latest/arrow_buffer/buffer/struct.Buffer.html#method.from_bytes

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

👍🏼 (also: need to check how to handle custom allocations for non-CPU allocators?).

Self {
data: buffer.into(),
alloc: Arc::new(alloc),
}
}

/// Creates a new tensor storage from an existing raw pointer with the given allocator.
///
/// # Arguments
///
/// * `ptr` - The existing raw pointer to the tensor data.
/// * `len` - The number of elements in the tensor storage.
/// * `alloc` - A reference to the allocator used to allocate the tensor storage.
///
/// # Safety
///
/// The pointer must be properly aligned and have the correct length.
pub unsafe fn from_ptr(ptr: *mut T, len: usize, alloc: &A) -> Self {
// create the buffer
let buffer = Buffer::from_custom_allocation(
NonNull::new_unchecked(ptr as *mut u8),
len * std::mem::size_of::<T>(),
Arc::new(()),
);

// create tensor storage
Self {
data: buffer.into(),
alloc: Arc::new(alloc.clone()),
}
}

/// Returns the allocator used to allocate the tensor storage.
#[inline]
pub fn alloc(&self) -> &A {
Expand Down Expand Up @@ -213,52 +261,6 @@ where
pub fn get_unchecked(&self, index: usize) -> &T {
unsafe { self.data.get_unchecked(index) }
}

/// Creates a new `TensorStorage` from a slice of data.
///
/// # Arguments
///
/// * `data` - A slice containing the data to be stored.
/// * `alloc` - The allocator to use for creating the storage.
///
/// # Returns
///
/// A new `TensorStorage` instance containing a copy of the input data.
///
/// # Errors
///
/// Returns a `TensorAllocatorError` if the allocation fails.
pub fn from_slice(data: &[T], alloc: A) -> Result<Self, TensorAllocatorError> {
let mut storage = Self::new(data.len(), alloc)?;
storage.as_mut_slice().copy_from_slice(data);
Ok(storage)
}

/// Creates a new tensor storage from an existing raw pointer with the given allocator.
///
/// # Arguments
///
/// * `ptr` - The existing raw pointer to the tensor data.
/// * `len` - The number of elements in the tensor storage.
/// * `alloc` - A reference to the allocator used to allocate the tensor storage.
///
/// # Safety
///
/// The pointer must be properly aligned and have the correct length.
pub unsafe fn from_ptr(ptr: *mut T, len: usize, alloc: &A) -> Self {
// create the buffer
let buffer = Buffer::from_custom_allocation(
NonNull::new_unchecked(ptr as *mut u8),
len * std::mem::size_of::<T>(),
Arc::new(()),
);

// create tensor storage
Self {
data: buffer.into(),
alloc: Arc::new(alloc.clone()),
}
}
}

/// A new `TensorStorage` instance with cloned data if successful, otherwise an error.
Expand Down
2 changes: 1 addition & 1 deletion crates/kornia-core/src/tensor.rs
Original file line number Diff line number Diff line change
Expand Up @@ -237,7 +237,7 @@ where
if numel != data.len() {
return Err(TensorError::InvalidShape(numel));
}
let storage = TensorStorage::from_slice(data, alloc)?;
let storage = TensorStorage::from_slice(data, alloc);
let strides = get_strides_from_shape(shape);
Ok(Self {
storage,
Expand Down
107 changes: 106 additions & 1 deletion crates/kornia-image/src/image.rs
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
use kornia_core::{CpuAllocator, SafeTensorType, Tensor3};
use kornia_core::{CpuAllocator, SafeTensorType, Tensor, Tensor2, Tensor3};

use crate::error::ImageError;

Expand Down Expand Up @@ -177,6 +177,27 @@ where
Ok(image)
}

/// Create a new image from a slice of pixel data.
///
/// # Arguments
///
/// * `size` - The size of the image in pixels.
/// * `data` - A slice containing the pixel data.
///
/// # Returns
///
/// A new image created from the given size and pixel data.
///
/// # Errors
///
/// Returns an error if the length of the data slice doesn't match the image dimensions,
/// or if there's an issue creating the tensor or image.
pub fn from_size_slice(size: ImageSize, data: &[T]) -> Result<Self, ImageError> {
let tensor: Tensor3<T> =
Tensor::from_shape_slice([size.height, size.width, C], data, CpuAllocator)?;
Image::try_from(tensor)
}

/// Cast the pixel data of the image to a different type.
///
/// # Returns
Expand Down Expand Up @@ -414,9 +435,54 @@ where
}
}

/// helper to convert an single channel tensor to a kornia image with try into
impl<T> TryFrom<Tensor2<T>> for Image<T, 1>
where
T: SafeTensorType,
{
type Error = ImageError;

fn try_from(value: Tensor2<T>) -> Result<Self, Self::Error> {
Self::from_size_slice(
ImageSize {
width: value.shape[1],
height: value.shape[0],
},
value.as_slice(),
)
}
}

/// helper to convert an multi channel tensor to a kornia image with try into
impl<T, const C: usize> TryFrom<Tensor3<T>> for Image<T, C>
where
T: SafeTensorType,
{
type Error = ImageError;

fn try_from(value: Tensor3<T>) -> Result<Self, Self::Error> {
if value.shape[2] != C {
return Err(ImageError::InvalidChannelShape(value.shape[2], C));
}
Ok(Self(value))
}
}

impl<T, const C: usize> TryInto<Tensor3<T>> for Image<T, C>
where
T: SafeTensorType,
{
type Error = ImageError;

fn try_into(self) -> Result<Tensor3<T>, Self::Error> {
Ok(self.0)
}
}

#[cfg(test)]
mod tests {
use crate::image::{Image, ImageError, ImageSize};
use kornia_core::{CpuAllocator, Tensor};

#[test]
fn image_size() {
Expand Down Expand Up @@ -560,4 +626,43 @@ mod tests {

Ok(())
}

#[test]
fn image_from_tensor() -> Result<(), ImageError> {
let tensor =
Tensor::<u8, 2, CpuAllocator>::from_shape_vec([2, 3], vec![0u8; 2 * 3], CpuAllocator)?;

let image = Image::<u8, 1>::try_from(tensor.clone())?;
assert_eq!(image.size().width, 3);
assert_eq!(image.size().height, 2);
assert_eq!(image.num_channels(), 1);

let image_2: Image<u8, 1> = tensor.try_into()?;
assert_eq!(image_2.size().width, 3);
assert_eq!(image_2.size().height, 2);
assert_eq!(image_2.num_channels(), 1);

Ok(())
}

#[test]
fn image_from_tensor_3d() -> Result<(), ImageError> {
let tensor = Tensor::<u8, 3, CpuAllocator>::from_shape_vec(
[2, 3, 4],
vec![0u8; 2 * 3 * 4],
CpuAllocator,
)?;

let image = Image::<u8, 4>::try_from(tensor.clone())?;
assert_eq!(image.size().width, 3);
assert_eq!(image.size().height, 2);
assert_eq!(image.num_channels(), 4);

let image_2: Image<u8, 4> = tensor.try_into()?;
assert_eq!(image_2.size().width, 3);
assert_eq!(image_2.size().height, 2);
assert_eq!(image_2.num_channels(), 4);

Ok(())
}
}
Loading