Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 0 additions & 10 deletions egs/wsj/s5/steps/libs/nnet3/train/frame_level_objf/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -200,7 +200,6 @@ def train_one_iteration(dir, iter, srand, egs_dir,

# Set off jobs doing some diagnostics, in the background.
# Use the egs dir from the previous iteration for the diagnostics
logger.info("Training neural net (pass {0})".format(iter))

# check if different iterations use the same random seed
if os.path.exists('{0}/srand'.format(dir)):
Expand Down Expand Up @@ -257,15 +256,6 @@ def train_one_iteration(dir, iter, srand, egs_dir,
cur_minibatch_size_str = common_train_lib.halve_minibatch_size_str(minibatch_size_str)
cur_max_param_change = float(max_param_change) / math.sqrt(2)

shrink_info_str = ''
if shrinkage_value != 1.0:
shrink_info_str = ' and shrink value is {0}'.format(shrinkage_value)

logger.info("On iteration {0}, learning rate is {1}"
"{shrink_info}.".format(
iter, learning_rate,
shrink_info=shrink_info_str))

train_new_models(dir=dir, iter=iter, srand=srand, num_jobs=num_jobs,
num_archives_processed=num_archives_processed,
num_archives=num_archives,
Expand Down
13 changes: 13 additions & 0 deletions egs/wsj/s5/steps/nnet3/train_dnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -324,6 +324,19 @@ def train(args, run_opts):
"shrink-value={1}".format(args.proportional_shrink,
shrinkage_value))

percent = num_archives_processed * 100.0 / num_archives_to_process
epoch = (num_archives_processed * args.num_epochs
/ num_archives_to_process)
shrink_info_str = ''
if shrinkage_value != 1.0:
shrink_info_str = 'shrink: {0:0.5f}'.format(shrinkage_value)
logger.info("Iter: {0}/{1} "
"Epoch: {2:0.2f}/{3:0.1f} ({4:0.1f}% complete) "
"lr: {5:0.6f} {6}".format(iter, num_iters - 1,
epoch, args.num_epochs,
percent,
lrate, shrink_info_str))

train_lib.common.train_one_iteration(
dir=args.dir,
iter=iter,
Expand Down
13 changes: 13 additions & 0 deletions egs/wsj/s5/steps/nnet3/train_raw_dnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -347,6 +347,19 @@ def train(args, run_opts):
"shrink-value={1}".format(args.proportional_shrink,
shrinkage_value))

percent = num_archives_processed * 100.0 / num_archives_to_process
epoch = (num_archives_processed * args.num_epochs
/ num_archives_to_process)
shrink_info_str = ''
if shrinkage_value != 1.0:
shrink_info_str = 'shrink: {0:0.5f}'.format(shrinkage_value)
logger.info("Iter: {0}/{1} "
"Epoch: {2:0.2f}/{3:0.1f} ({4:0.1f}% complete) "
"lr: {5:0.6f} {6}".format(iter, num_iters - 1,
epoch, args.num_epochs,
percent,
lrate, shrink_info_str))

train_lib.common.train_one_iteration(
dir=args.dir,
iter=iter,
Expand Down
13 changes: 13 additions & 0 deletions egs/wsj/s5/steps/nnet3/train_raw_rnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -423,6 +423,19 @@ def train(args, run_opts):
get_raw_nnet_from_am=False)
else shrinkage_value)

percent = num_archives_processed * 100.0 / num_archives_to_process
epoch = (num_archives_processed * args.num_epochs
/ num_archives_to_process)
shrink_info_str = ''
if shrinkage_value != 1.0:
shrink_info_str = 'shrink: {0:0.5f}'.format(shrinkage_value)
logger.info("Iter: {0}/{1} "
"Epoch: {2:0.2f}/{3:0.1f} ({4:0.1f}% complete) "
"lr: {5:0.6f} {6}".format(iter, num_iters - 1,
epoch, args.num_epochs,
percent,
lrate, shrink_info_str))

train_lib.common.train_one_iteration(
dir=args.dir,
iter=iter,
Expand Down
13 changes: 13 additions & 0 deletions egs/wsj/s5/steps/nnet3/train_rnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -405,6 +405,19 @@ def train(args, run_opts):
iter, model_file,
args.shrink_saturation_threshold) else 1.0)

percent = num_archives_processed * 100.0 / num_archives_to_process
epoch = (num_archives_processed * args.num_epochs
/ num_archives_to_process)
shrink_info_str = ''
if shrinkage_value != 1.0:
shrink_info_str = 'shrink: {0:0.5f}'.format(shrinkage_value)
logger.info("Iter: {0}/{1} "
"Epoch: {2:0.2f}/{3:0.1f} ({4:0.1f}% complete) "
"lr: {5:0.6f} {6}".format(iter, num_iters - 1,
epoch, args.num_epochs,
percent,
lrate, shrink_info_str))

train_lib.common.train_one_iteration(
dir=args.dir,
iter=iter,
Expand Down