Skip to content

Multi-task learning and the KNN triplet mining for digitized visual art image retrieval

License

Notifications You must be signed in to change notification settings

jhgan00/fineart-image-retrieval

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Fine Art Image Retrieval

This repository is based on the pytorch implementation of Masked Autoencoders Are Scalable Vision Learners(He et al., 2021).

img.png

Architecture

The system trains MAE model with style classification, genre classification and triplet learning task simultaneously.

KNN Triplet Loss

For each data point $x^{(a)}$ in a minibatch and the $k$-nearest neighbors $x_1^{(a)}, x_2^{(a)}, \cdots, x_k^{(a)}$, the knn triplet loss is defined as:

image

where the relevance measure $r_i^{(a)}$ is defined as:

$$r_i^{(a)}= \begin{cases} 1 & \text{ if } s^{(a)} = s_i^{(a)} \text{ and } g^{(a)} = g_i^{(a)} \\ 0 & \text{ if } s^{(a)} \neq s_i^{(a)} \text{ and } g^{(a)} \neq g_i^{(a)} \\ 0.5 & \text{ otherwise} \end{cases} $$

Experiments

Loss Function Wikiart paintings MultitaskPainting100k
Style Genre Style Genre
P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10
$L_{style}$ 69.11 67.86 67.48 64.56 59.95 57.26 62.89 59.58 58.19 57.25 52.81 50.43
$L_{style} + L_{triplet}$ 69.71 68.48 68.02 77.20 75.80 75.18 63.04 60.25 59.12 65.17 62.65 61.42
$L_{genre}$ 41.71 36.79 34.30 77.53 77.10 77.18 40.63 34.61 31.83 67.36 66.38 65.93
$L_{genre} + L_{triplet}$ 54.82 51.18 49.33 79.34 79.02 78.99 45.96 40.73 38.21 68.56 67.62 67.31
$L_{style} + L_{genre}$ 69.09 66.81 65.67 78.66 77.41 76.70 61.79 57.18 54.88 66.92 63.99 62.61
$L_{style} + L_{genre} + L_{triplet}$ 69.21 67.35 66.49 79.83 79.07 78.77 61.78 58.10 56.15 69.17 67.29 66.49

About

Multi-task learning and the KNN triplet mining for digitized visual art image retrieval

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages