-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
307 lines (247 loc) · 12.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# DeiT: https://github.com/facebookresearch/deit
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
# --------------------------------------------------------
import csv
import argparse
import datetime
import numpy as np
import os
import time
import random
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
from timm.models.layers import trunc_normal_
from timm.loss import LabelSmoothingCrossEntropy
import mae.util.lr_decay as lrd
import mae.util.misc as misc
from mae.util.datasets import build_transform
from mae.util.pos_embed import interpolate_pos_embed
from mae.util.misc import NativeScalerWithGradNormCount as NativeScaler
from mae import models_vit
from mae.engine_knn import train_one_epoch, evaluate
from dataset import get_dataset
def get_args_parser():
parser = argparse.ArgumentParser('MAE fine-tuning for image retrieval', add_help=False)
parser.add_argument('--batch_size', default=64, type=int,
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--epochs', default=50, type=int)
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
# Model parameters
parser.add_argument('--model', default='vit_base_patch16_multitask', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--input_size', default=224, type=int,
help='images input size')
parser.add_argument('--drop_path', type=float, default=0.1, metavar='PCT',
help='Drop path rate (default: 0.1)')
# Optimizer parameters
parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1e-3, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--layer_decay', type=float, default=0.75,
help='layer-wise lr decay from ELECTRA/BEiT')
parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR')
# Augmentation parameters
parser.add_argument('--color_jitter', type=float, default=None, metavar='PCT',
help='Color jitter factor (enabled only when not using Auto/RandAug)')
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". " + "(default: rand-m9-mstd0.5-inc1)'),
parser.add_argument('--smoothing', type=float, default=0.1,
help='Label smoothing (default: 0.1)')
# * Finetuning params
parser.add_argument('--finetune', default='pretrained/mae_pretrain_vit_base.pth',
help='finetune from checkpoint')
parser.add_argument('--global_pool', action='store_true')
parser.set_defaults(global_pool=True)
# Dataset parameters
parser.add_argument("--dataset", default='wikiart', type=str, choices=['wikiart', 'multitask_painting_100k'])
parser.add_argument('--data_path', default='/data/wikiart', type=str, help='dataset path')
parser.add_argument('--output_dir', default='finetuning',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default='finetuning',
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda:1',
help='device to use for training / testing')
parser.add_argument('--seed', default=777, type=int)
parser.add_argument('--resume', default='',
help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true',
help='Perform evaluation only')
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
# loss params
parser.add_argument('--k', type=int, default=5)
parser.add_argument('--margin', type=float, default=0.2)
parser.add_argument('--lambda_style', type=float, default=1.)
parser.add_argument('--lambda_genre', type=float, default=1.)
parser.add_argument('--lambda_knn', type=float, default=5.)
return parser
def main(args):
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
device = torch.device(args.device)
# fix the seed for reproducibility
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed) # if use multi-GPU
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(args.seed)
random.seed(args.seed)
Dataset = get_dataset(args.dataset)
dataset_train = Dataset(root_dir=args.data_path, split="train", transform=build_transform(True, args))
dataset_val = Dataset(root_dir=args.data_path, split="valid", transform=build_transform(False, args))
dataset_test = Dataset(root_dir=args.data_path, split="test", transform=build_transform(False, args))
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
sampler_test = torch.utils.data.SequentialSampler(dataset_test)
if args.log_dir is not None and not args.eval:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = SummaryWriter(log_dir=args.log_dir)
else:
log_writer = None
data_loader_train = torch.utils.data.DataLoader(
dataset_train,
sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val,
sampler=sampler_val,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False
)
data_loader_test = torch.utils.data.DataLoader(
dataset_test,
sampler=sampler_test,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False
)
model = models_vit.__dict__[args.model](
num_styles=Dataset.num_styles,
num_genres=Dataset.num_genres,
drop_path_rate=args.drop_path,
global_pool=args.global_pool,
)
if args.finetune and not args.eval:
checkpoint = torch.load(args.finetune, map_location='cpu')
print("Load pre-trained checkpoint from: %s" % args.finetune)
checkpoint_model = checkpoint['model']
state_dict = model.state_dict()
for k in ['head.weight', 'head.bias']:
if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
print(f"Removing key {k} from pretrained checkpoint")
del checkpoint_model[k]
# interpolate position embedding
interpolate_pos_embed(model, checkpoint_model)
# load pre-trained model
msg = model.load_state_dict(checkpoint_model, strict=False)
print(msg)
trunc_normal_(model.head1.weight, std=2e-5)
trunc_normal_(model.head2.weight, std=2e-5)
model.to(device)
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("Model = %s" % str(model_without_ddp))
print('number of params (M): %.2f' % (n_parameters / 1.e6))
eff_batch_size = args.batch_size * args.accum_iter
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 256
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
print("actual lr: %.2e" % args.lr)
print("accumulate grad iterations: %d" % args.accum_iter)
print("effective batch size: %d" % eff_batch_size)
# build optimizer with layer-wise lr decay (lrd)
param_groups = lrd.param_groups_lrd(model_without_ddp, args.weight_decay,
no_weight_decay_list=model_without_ddp.no_weight_decay(),
layer_decay=args.layer_decay
)
optimizer = torch.optim.AdamW(param_groups, lr=args.lr)
loss_scaler = NativeScaler()
if args.smoothing > 0.:
criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
else:
criterion = torch.nn.CrossEntropyLoss()
TORCH_MAJOR = int(torch.__version__.split('.')[0])
TORCH_MINOR = int(torch.__version__.split('.')[1])
if TORCH_MAJOR == 1 and TORCH_MINOR < 8:
from torch._six import container_abcs
else:
import collections.abc as container_abcs
print("criterion = %s" % str(criterion))
if args.eval:
test_stats = evaluate(data_loader_test, model, device)
exit(0)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
max_mAP = 0.0
for epoch in range(args.start_epoch, args.epochs):
train_one_epoch(
model, criterion, data_loader_train,
optimizer, device, epoch, loss_scaler,
args.clip_grad,
log_writer=log_writer,
args=args
)
eval_stats = evaluate(data_loader_val, model, device, epoch, log_writer)
eval_stats.append(epoch)
mAP_style = eval_stats[0]
mAP_genre = eval_stats[1]
mAP = (mAP_style + mAP_genre) * 0.5
if mAP > max_mAP and args.output_dir:
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch="best")
max_mAP = max(max_mAP, mAP)
if args.output_dir and misc.is_main_process():
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
writer = csv.writer(f)
writer.writerow(eval_stats)
checkpoint = torch.load(os.path.join(args.output_dir, 'checkpoint-best.pth'), map_location='cpu')
checkpoint_model = checkpoint['model']
model.load_state_dict(checkpoint_model)
test_stats = evaluate(data_loader_test, model, device, args.epochs, log_writer)
test_stats.append("test")
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
writer = csv.writer(f)
writer.writerow(test_stats)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
expr_name = f"{args.dataset}-k{args.k}-margin{args.margin}-lambda_style{args.lambda_style}-lambda_genre{args.lambda_genre}-lambda_knn{args.lambda_knn}"
args.output_dir = os.path.join(args.output_dir, expr_name)
args.log_dir = os.path.join(args.output_dir)
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)