Skip to content

Reduce memory usage (2-3x times) #20

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
57 changes: 32 additions & 25 deletions train.py
Original file line number Diff line number Diff line change
Expand Up @@ -112,7 +112,7 @@ def main():
parent_conns.append(parent_conn)
child_conns.append(child_conn)

states = np.zeros([num_worker, 4, 84, 84])
states = np.zeros([num_worker, 4, 84, 84], dtype='float32')

sample_episode = 0
sample_rall = 0
Expand All @@ -124,61 +124,65 @@ def main():

# normalize obs
print('Start to initailize observation normalization parameter.....')
next_obs = []
next_obs = np.zeros([num_worker * num_step, 1, 84, 84])
for step in range(num_step * pre_obs_norm_step):
actions = np.random.randint(0, output_size, size=(num_worker,))

for parent_conn, action in zip(parent_conns, actions):
parent_conn.send(action)

for parent_conn in parent_conns:
for idx, parent_conn in enumerate(parent_conns):
s, r, d, rd, lr = parent_conn.recv()
next_obs.append(s[3, :, :].reshape([1, 84, 84]))
next_obs[(step % num_step) * num_worker + idx, 0, :, :] = s[3, :, :]

if len(next_obs) % (num_step * num_worker) == 0:
next_obs = np.stack(next_obs)
if (step % num_step) == num_step - 1:
obs_rms.update(next_obs)
next_obs = []
next_obs = np.zeros([num_worker * num_step, 1, 84, 84])
print('End to initalize...')

while True:
total_state, total_reward, total_done, total_next_state, total_action, total_int_reward, total_next_obs, total_ext_values, total_int_values, total_policy, total_policy_np = \
[], [], [], [], [], [], [], [], [], [], []
total_state = np.zeros([num_worker * num_step, 4, 84, 84], dtype='float32')
total_next_obs = np.zeros([num_worker * num_step, 1, 84, 84])
total_reward, total_done, total_next_state, total_action, total_int_reward, total_ext_values, total_int_values, total_policy, total_policy_np = \
[], [], [], [], [], [], [], [], []
global_step += (num_worker * num_step)
global_update += 1

# Step 1. n-step rollout
for _ in range(num_step):
actions, value_ext, value_int, policy = agent.get_action(np.float32(states) / 255.)
for step in range(num_step):
actions, value_ext, value_int, policy = agent.get_action(states / 255.)

for parent_conn, action in zip(parent_conns, actions):
parent_conn.send(action)

next_states, rewards, dones, real_dones, log_rewards, next_obs = [], [], [], [], [], []
for parent_conn in parent_conns:
next_obs = np.zeros([num_worker, 1, 84, 84])
next_states = np.zeros([num_worker, 4, 84, 84])
rewards, dones, real_dones, log_rewards = [], [], [], []
for idx, parent_conn in enumerate(parent_conns):
s, r, d, rd, lr = parent_conn.recv()
next_states.append(s)
next_states[idx] = s
rewards.append(r)
dones.append(d)
real_dones.append(rd)
log_rewards.append(lr)
next_obs.append(s[3, :, :].reshape([1, 84, 84]))
next_obs[idx, 0] = s[3, :, :]
total_next_obs[idx * num_step + step, 0] = s[3, :, :]

next_states = np.stack(next_states)
rewards = np.hstack(rewards)
dones = np.hstack(dones)
real_dones = np.hstack(real_dones)
next_obs = np.stack(next_obs)

# total reward = int reward + ext Reward
intrinsic_reward = agent.compute_intrinsic_reward(
((next_obs - obs_rms.mean) / np.sqrt(obs_rms.var)).clip(-5, 5))
next_obs -= obs_rms.mean
next_obs /= np.sqrt(obs_rms.var)
next_obs.clip(-5, 5, out=next_obs)
intrinsic_reward = agent.compute_intrinsic_reward(next_obs)
intrinsic_reward = np.hstack(intrinsic_reward)
sample_i_rall += intrinsic_reward[sample_env_idx]

total_next_obs.append(next_obs)
for idx, state in enumerate(states):
total_state[idx * num_step + step] = state
total_int_reward.append(intrinsic_reward)
total_state.append(states)
total_reward.append(rewards)
total_done.append(dones)
total_action.append(actions)
Expand Down Expand Up @@ -207,11 +211,9 @@ def main():
total_int_values.append(value_int)
# --------------------------------------------------

total_state = np.stack(total_state).transpose([1, 0, 2, 3, 4]).reshape([-1, 4, 84, 84])
total_reward = np.stack(total_reward).transpose().clip(-1, 1)
total_action = np.stack(total_action).transpose().reshape([-1])
total_done = np.stack(total_done).transpose()
total_next_obs = np.stack(total_next_obs).transpose([1, 0, 2, 3, 4]).reshape([-1, 1, 84, 84])
total_ext_values = np.stack(total_ext_values).transpose()
total_int_values = np.stack(total_int_values).transpose()
total_logging_policy = np.vstack(total_policy_np)
Expand Down Expand Up @@ -260,8 +262,13 @@ def main():
# -----------------------------------------------

# Step 5. Training!
agent.train_model(np.float32(total_state) / 255., ext_target, int_target, total_action,
total_adv, ((total_next_obs - obs_rms.mean) / np.sqrt(obs_rms.var)).clip(-5, 5),
total_state /= 255.
total_next_obs -= obs_rms.mean
total_next_obs /= np.sqrt(obs_rms.var)
total_next_obs.clip(-5, 5, out=total_next_obs)

agent.train_model(total_state, ext_target, int_target, total_action,
total_adv, total_next_obs,
total_policy)

if global_step % (num_worker * num_step * 100) == 0:
Expand Down