Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Added create_training_pipeline_custom_job_sample and create_training_pipeline_custom_training_managed_dataset_sample and fixed create_training_pipeline_image_classification_sample #343

Merged
merged 10 commits into from
Apr 27, 2021
13 changes: 13 additions & 0 deletions samples/model-builder/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -152,6 +152,19 @@ def mock_run_automl_image_training_job():
yield mock


@pytest.fixture
def mock_init_custom_training_job():
with patch.object(aiplatform.training_jobs.CustomTrainingJob, "__init__") as mock:
mock.return_value = None
yield mock


@pytest.fixture
def mock_run_custom_training_job():
with patch.object(aiplatform.training_jobs.CustomTrainingJob, "run") as mock:
yield mock


"""
----------------------------------------------------------------------------
Model Fixtures
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import List, Optional, Union

from google.cloud import aiplatform


# [START aiplatform_sdk_create_training_pipeline_custom_job_sample]
def create_training_pipeline_custom_job_sample(
project: str,
location: str,
display_name: str,
script_path: str,
sasha-gitg marked this conversation as resolved.
Show resolved Hide resolved
container_uri: str,
model_serving_container_image_uri: str,
model_display_name: Optional[str] = None,
args: Optional[List[Union[str, float, int]]] = None,
replica_count: int = 0,
machine_type: str = "n1-standard-4",
accelerator_type: str = "ACCELERATOR_TYPE_UNSPECIFIED",
accelerator_count: int = 0,
training_fraction_split: float = 0.8,
sasha-gitg marked this conversation as resolved.
Show resolved Hide resolved
validation_fraction_split: float = 0.1,
test_fraction_split: float = 0.1,
sync: bool = True,
):
aiplatform.init(project=project, location=location)

job = aiplatform.CustomTrainingJob(
display_name=display_name,
script_path=script_path,
container_uri=container_uri,
model_serving_container_image_uri=model_serving_container_image_uri,
)

model = job.run(
model_display_name=model_display_name,
args=args,
replica_count=replica_count,
machine_type=machine_type,
accelerator_type=accelerator_type,
accelerator_count=accelerator_count,
training_fraction_split=training_fraction_split,
validation_fraction_split=validation_fraction_split,
test_fraction_split=test_fraction_split,
sync=sync,
)

model.wait()

print(model.display_name)
print(model.resource_name)
print(model.uri)
return model


# [END aiplatform_sdk_create_training_pipeline_custom_job_sample]
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import create_training_pipeline_custom_job_sample
import test_constants as constants


def test_create_training_pipeline_custom_job_sample(
mock_sdk_init, mock_init_custom_training_job, mock_run_custom_training_job,
):

create_training_pipeline_custom_job_sample.create_training_pipeline_custom_job_sample(
project=constants.PROJECT,
location=constants.LOCATION,
display_name=constants.DISPLAY_NAME,
args=constants.ARGS,
script_path=constants.SCRIPT_PATH,
container_uri=constants.CONTAINER_URI,
model_serving_container_image_uri=constants.CONTAINER_URI,
model_display_name=constants.DISPLAY_NAME_2,
replica_count=constants.REPLICA_COUNT,
machine_type=constants.MACHINE_TYPE,
accelerator_type=constants.ACCELERATOR_TYPE,
accelerator_count=constants.ACCELERATOR_COUNT,
training_fraction_split=constants.TRAINING_FRACTION_SPLIT,
validation_fraction_split=constants.VALIDATION_FRACTION_SPLIT,
test_fraction_split=constants.TEST_FRACTION_SPLIT,
)

mock_sdk_init.assert_called_once_with(
project=constants.PROJECT, location=constants.LOCATION
)
mock_init_custom_training_job.assert_called_once_with(
display_name=constants.DISPLAY_NAME,
script_path=constants.SCRIPT_PATH,
container_uri=constants.CONTAINER_URI,
model_serving_container_image_uri=constants.CONTAINER_URI,
)
mock_run_custom_training_job.assert_called_once_with(
model_display_name=constants.DISPLAY_NAME_2,
replica_count=constants.REPLICA_COUNT,
machine_type=constants.MACHINE_TYPE,
accelerator_type=constants.ACCELERATOR_TYPE,
accelerator_count=constants.ACCELERATOR_COUNT,
args=constants.ARGS,
training_fraction_split=constants.TRAINING_FRACTION_SPLIT,
validation_fraction_split=constants.VALIDATION_FRACTION_SPLIT,
test_fraction_split=constants.TEST_FRACTION_SPLIT,
sync=True,
)
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import List, Optional, Union

from google.cloud import aiplatform


# [START aiplatform_sdk_create_training_pipeline_custom_job_sample]
def create_training_pipeline_custom_training_managed_dataset_sample(
project: str,
location: str,
display_name: str,
script_path: str,
container_uri: str,
model_serving_container_image_uri: str,
dataset_id: int,
model_display_name: Optional[str] = None,
args: Optional[List[Union[str, float, int]]] = None,
replica_count: int = 0,
machine_type: str = "n1-standard-4",
accelerator_type: str = "ACCELERATOR_TYPE_UNSPECIFIED",
accelerator_count: int = 0,
training_fraction_split: float = 0.8,
validation_fraction_split: float = 0.1,
test_fraction_split: float = 0.1,
sync: bool = True,
):
aiplatform.init(project=project, location=location)

job = aiplatform.CustomTrainingJob(
display_name=display_name,
script_path=script_path,
container_uri=container_uri,
model_serving_container_image_uri=model_serving_container_image_uri,
)

my_image_ds = aiplatform.ImageDataset(dataset_id)

model = job.run(
dataset=my_image_ds,
model_display_name=model_display_name,
args=args,
replica_count=replica_count,
machine_type=machine_type,
accelerator_type=accelerator_type,
accelerator_count=accelerator_count,
training_fraction_split=training_fraction_split,
validation_fraction_split=validation_fraction_split,
test_fraction_split=test_fraction_split,
sync=sync,
)

model.wait()

print(model.display_name)
print(model.resource_name)
print(model.uri)
return model


# [END aiplatform_sdk_create_training_pipeline_custom_job_sample]
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import create_training_pipeline_custom_training_managed_dataset_sample
import test_constants as constants


def test_create_training_pipeline_custom_job_sample(
mock_sdk_init,
mock_image_dataset,
mock_init_custom_training_job,
mock_run_custom_training_job,
mock_get_image_dataset,
):

create_training_pipeline_custom_training_managed_dataset_sample.create_training_pipeline_custom_training_managed_dataset_sample(
project=constants.PROJECT,
location=constants.LOCATION,
display_name=constants.DISPLAY_NAME,
args=constants.ARGS,
script_path=constants.SCRIPT_PATH,
container_uri=constants.CONTAINER_URI,
model_serving_container_image_uri=constants.CONTAINER_URI,
dataset_id=constants.RESOURCE_ID,
model_display_name=constants.DISPLAY_NAME_2,
replica_count=constants.REPLICA_COUNT,
machine_type=constants.MACHINE_TYPE,
accelerator_type=constants.ACCELERATOR_TYPE,
accelerator_count=constants.ACCELERATOR_COUNT,
training_fraction_split=constants.TRAINING_FRACTION_SPLIT,
validation_fraction_split=constants.VALIDATION_FRACTION_SPLIT,
test_fraction_split=constants.TEST_FRACTION_SPLIT,
)

mock_get_image_dataset.assert_called_once_with(constants.RESOURCE_ID)

mock_sdk_init.assert_called_once_with(
project=constants.PROJECT, location=constants.LOCATION
)
mock_init_custom_training_job.assert_called_once_with(
display_name=constants.DISPLAY_NAME,
script_path=constants.SCRIPT_PATH,
container_uri=constants.CONTAINER_URI,
model_serving_container_image_uri=constants.CONTAINER_URI,
)
mock_run_custom_training_job.assert_called_once_with(
dataset=mock_image_dataset,
model_display_name=constants.DISPLAY_NAME_2,
args=constants.ARGS,
replica_count=constants.REPLICA_COUNT,
machine_type=constants.MACHINE_TYPE,
accelerator_type=constants.ACCELERATOR_TYPE,
accelerator_count=constants.ACCELERATOR_COUNT,
training_fraction_split=constants.TRAINING_FRACTION_SPLIT,
validation_fraction_split=constants.VALIDATION_FRACTION_SPLIT,
test_fraction_split=constants.TEST_FRACTION_SPLIT,
sync=True,
)
Original file line number Diff line number Diff line change
Expand Up @@ -12,16 +12,18 @@
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional

from google.cloud import aiplatform


# [START aiplatform_sdk_create_training_pipeline_image_classification_sample]
def create_training_pipeline_image_classification_sample(
project: str,
location: str,
display_name: str,
dataset_id: int,
location: str = "us-central1",
model_display_name: str = None,
model_display_name: Optional[str] = None,
training_fraction_split: float = 0.8,
validation_fraction_split: float = 0.1,
test_fraction_split: float = 0.1,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@ def test_create_training_pipeline_image_classification_sample(

create_training_pipeline_image_classification_sample.create_training_pipeline_image_classification_sample(
project=constants.PROJECT,
location=constants.LOCATION,
display_name=constants.DISPLAY_NAME,
dataset_id=constants.RESOURCE_ID,
model_display_name=constants.DISPLAY_NAME_2,
Expand Down
9 changes: 9 additions & 0 deletions samples/model-builder/test_constants.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,7 @@
TRAINING_JOB_NAME = f"{PARENT}/trainingJobs/{RESOURCE_ID}"

GCS_SOURCES = ["gs://bucket1/source1.jsonl", "gs://bucket7/source4.jsonl"]
BIGQUERY_SOURCE = "bq://bigquery-public-data.ml_datasets.iris"
GCS_DESTINATION = "gs://bucket3/output-dir/"

TRAINING_FRACTION_SPLIT = 0.7
Expand All @@ -51,3 +52,11 @@
ENCRYPTION_SPEC_KEY_NAME = f"{PARENT}/keyRings/{RESOURCE_ID}/cryptoKeys/{RESOURCE_ID_2}"

PREDICTION_TEXT_INSTANCE = "This is some text for testing NLP prediction output"

SCRIPT_PATH = "task.py"
CONTAINER_URI = "gcr.io/my_project/my_image:latest"
ARGS = ["--tfds", "tf_flowers:3.*.*"]
REPLICA_COUNT = 0
MACHINE_TYPE = "n1-standard-4"
ACCELERATOR_TYPE = "ACCELERATOR_TYPE_UNSPECIFIED"
ACCELERATOR_COUNT = 0