forked from googleapis/python-aiplatform
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_training_pipeline_custom_job_sample.py
69 lines (59 loc) · 2.2 KB
/
create_training_pipeline_custom_job_sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Union
from google.cloud import aiplatform
# [START aiplatform_sdk_create_training_pipeline_custom_job_sample]
def create_training_pipeline_custom_job_sample(
project: str,
location: str,
display_name: str,
script_path: str,
container_uri: str,
model_serving_container_image_uri: str,
model_display_name: Optional[str] = None,
args: Optional[List[Union[str, float, int]]] = None,
replica_count: int = 0,
machine_type: str = "n1-standard-4",
accelerator_type: str = "ACCELERATOR_TYPE_UNSPECIFIED",
accelerator_count: int = 0,
training_fraction_split: float = 0.8,
validation_fraction_split: float = 0.1,
test_fraction_split: float = 0.1,
sync: bool = True,
):
aiplatform.init(project=project, location=location)
job = aiplatform.CustomTrainingJob(
display_name=display_name,
script_path=script_path,
container_uri=container_uri,
model_serving_container_image_uri=model_serving_container_image_uri,
)
model = job.run(
model_display_name=model_display_name,
args=args,
replica_count=replica_count,
machine_type=machine_type,
accelerator_type=accelerator_type,
accelerator_count=accelerator_count,
training_fraction_split=training_fraction_split,
validation_fraction_split=validation_fraction_split,
test_fraction_split=test_fraction_split,
sync=sync,
)
model.wait()
print(model.display_name)
print(model.resource_name)
print(model.uri)
return model
# [END aiplatform_sdk_create_training_pipeline_custom_job_sample]