Skip to content

generic, fast lookup on one dimensional intervals. The implementation is based on treaps, augmented for intervals. Treaps are randomized self balancing binary search trees.

License

Notifications You must be signed in to change notification settings

gaissmai/interval

Repository files navigation

package interval

Go Reference GitHub release (latest SemVer) CI Coverage Status Stand With Ukraine License: MIT

API CHANGE !!!

The API has changed from v0.9.1 to v0.10.0

Overview

package interval is an immutable datastructure for fast lookups in one dimensional intervals.

The implementation is based on treaps, augmented for intervals. Treaps are randomized self balancing binary search trees.

The author is propably the first (in december 2022) using augmented treaps as a very promising data structure for the representation of dynamic IP address tables for arbitrary ranges, that enables most and least specific range matching and even more lookup methods returning sets of intervals.

The library can be used for all comparable one-dimensional intervals, but the author of the library uses it mainly for fast IP range lookups in access control lists (ACL) and in his own IP address management (IPAM) and network management software.

The augmented treap is NOT limited to IP CIDR ranges unlike the prefix trie. Arbitrary IP ranges and both IP versions can be handled together in this data structure.

Due to the nature of treaps the lookups and updates can be concurrently decoupled, without delayed rebalancing, promising to be a perfect match for a software-router or firewall.

To familiarize yourself with treaps, see the extraordinarily good lectures from Pavel Mavrin about Algorithms and Datastructures e.g. "Treaps, implicit keys" or follow some links about treaps from one of the inventors.

Especially useful is the paper "Fast Set Operations Using Treaps" by Guy E. Blelloch and Margaret Reid-Miller.

Compare function

To apply this library to types of one-dimensional intervals, you must provide a compare function:

  // cmp must return four int values:
  //
  //  ll: left  point interval a compared with left  point interval b (-1, 0, +1)
  //  rr: right point interval a compared with right point interval b (-1, 0, +1)
  //  lr: left  point interval a compared with right point interval b (-1, 0, +1)
  //  rl: right point interval a compared with left  point interval b (-1, 0, +1)
  //
  func[T any] cmp(a, b T) (ll, rr, lr, rl int)

API

  import "github.com/gaissmai/interval"

  type Tree[T any] struct{ ... }
  func NewTree[T any](cmp func(a, b T) (ll, rr, lr, rl int), items ...T) *Tree[T]

  func NewTreeConcurrent[T any](jobs int, cmp func(a, b T) (ll, rr, lr, rl int), items ...T) *Tree[T]

  func (t *Tree[T]) Insert(items ...T)
  func (t *Tree[T]) Delete(item T) bool
  func (t *Tree[T]) Union(other *Tree[T], overwrite bool)

  func (t Tree[T]) InsertImmutable(items ...T) *Tree[T]
  func (t Tree[T]) DeleteImmutable(item T) (*Tree[T], bool)
  func (t Tree[T]) UnionImmutable(other *Tree[T], overwrite bool) *Tree[T]
  func (t Tree[T]) Clone() *Tree[T]

  func (t Tree[T]) Find(item T) (result T, ok bool)
  func (t Tree[T]) CoverLCP(item T) (result T, ok bool)
  func (t Tree[T]) CoverSCP(item T) (result T, ok bool)
  func (t Tree[T]) Intersects(item T) bool

  func (t Tree[T]) Covers(item T) []T
  func (t Tree[T]) Precedes(item T) []T

  func (t Tree[T]) CoveredBy(item T) []T
  func (t Tree[T]) PrecededBy(item T) []T

  func (t Tree[T]) Intersections(item T) []T

  func (t Tree[T]) Visit(start, stop T, visitFn func(item T) bool)
  func (t Tree[T]) Fprint(w io.Writer) error
  func (t Tree[T]) String() string
  func (t Tree[T]) Min() (min T)
  func (t Tree[T]) Max() (max T)

Benchmarks

Insert

The benchmark for Insert() shows the values for inserting an item into trees with increasing size.

The trees are randomly generated, as is the item to be inserted.

$ go test -benchmem -bench='Insert'
goos: linux
goarch: amd64
pkg: github.com/gaissmai/interval
cpu: Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz

BenchmarkInsert/Into1-8               10415164           128 ns/op        64 B/op          1 allocs/op
BenchmarkInsert/Into10-8               5160836           245 ns/op        64 B/op          1 allocs/op
BenchmarkInsert/Into100-8              2707705           443 ns/op        64 B/op          1 allocs/op
BenchmarkInsert/Into1_000-8            1694250           723 ns/op        64 B/op          1 allocs/op
BenchmarkInsert/Into10_000-8           1204220           963 ns/op        64 B/op          1 allocs/op
BenchmarkInsert/Into100_000-8           966566          1249 ns/op        64 B/op          1 allocs/op
BenchmarkInsert/Into1_000_000-8         645523          1863 ns/op        64 B/op          1 allocs/op

Delete

$ go test -benchmem -bench='Delete'
goos: linux
goarch: amd64
pkg: github.com/gaissmai/interval
cpu: Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz

BenchmarkDelete/DeleteFrom10-8          7682869           156 ns/op        0 B/op          0 allocs/op
BenchmarkDelete/DeleteFrom100-8        13009023            92 ns/op        0 B/op          0 allocs/op
BenchmarkDelete/DeleteFrom1_000-8       1912417           627 ns/op        0 B/op          0 allocs/op
BenchmarkDelete/DeleteFrom10_000-8      1362752           889 ns/op        0 B/op          0 allocs/op
BenchmarkDelete/DeleteFrom100_000-8      893157          1334 ns/op        0 B/op          0 allocs/op
BenchmarkDelete/DeleteFrom1_000_000-8    647199          1828 ns/op        0 B/op          0 allocs/op

Lookups

The benchmark for CoverLCP() (also known as longest-prefix-match when the interval is an IP-CIDR prefix) is very promising, as it is a generalized algorithm that is not specifically optimized only for IP address lookup:

$ go test -benchmem -bench='CoverLCP'
goos: linux
goarch: amd64
pkg: github.com/gaissmai/interval
cpu: Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz

BenchmarkCoverLCP/In100-8            4833073       239 ns/op        0 B/op    0 allocs/op
BenchmarkCoverLCP/In1_000-8          3714054       323 ns/op        0 B/op    0 allocs/op
BenchmarkCoverLCP/In10_000-8         1897353       630 ns/op        0 B/op    0 allocs/op
BenchmarkCoverLCP/In100_000-8        1533745       782 ns/op        0 B/op    0 allocs/op
BenchmarkCoverLCP/In1_000_000-8      1732171       693 ns/op        0 B/op    0 allocs/op

... and for Intersects():

$ go test -benchmem -bench='Intersects'
goos: linux
goarch: amd64
pkg: github.com/gaissmai/interval
cpu: Intel(R) Core(TM) i5-7500T CPU @ 2.70GHz

BenchmarkIntersects/In1-4           58757540        19 ns/op        0 B/op    0 allocs/op
BenchmarkIntersects/In10-4          27267051        40 ns/op        0 B/op    0 allocs/op
BenchmarkIntersects/In100-4         17559418        60 ns/op        0 B/op    0 allocs/op
BenchmarkIntersects/In1_000-4       10471032       120 ns/op        0 B/op    0 allocs/op
BenchmarkIntersects/In10_000-4       6546705       175 ns/op        0 B/op    0 allocs/op
BenchmarkIntersects/In100_000-4      7483621       191 ns/op        0 B/op    0 allocs/op
BenchmarkIntersects/In1_000_000-4    8134428       149 ns/op        0 B/op    0 allocs/op

... or Find(), the exact match:

$ go test -benchmem -bench='Find'
goos: linux
goarch: amd64
pkg: github.com/gaissmai/interval
cpu: Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz

BenchmarkFind/In100-8               17299449        63 ns/op      0 B/op    0 allocs/op
BenchmarkFind/In1_000-8             17327350        69 ns/op      0 B/op    0 allocs/op
BenchmarkFind/In10_000-8            12858908        90 ns/op      0 B/op    0 allocs/op
BenchmarkFind/In100_000-8            4696676       256 ns/op      0 B/op    0 allocs/op
BenchmarkFind/In1_000_000-8          7131028       163 ns/op      0 B/op    0 allocs/op

With all other methods, the treap is split before the search, which allocates memory but minimises the search space.

About

generic, fast lookup on one dimensional intervals. The implementation is based on treaps, augmented for intervals. Treaps are randomized self balancing binary search trees.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages