Skip to content

Commit

Permalink
fix hom-set function categories
Browse files Browse the repository at this point in the history
  • Loading branch information
fredrik-bakke committed Sep 21, 2023
1 parent 3bfc7dd commit 3a646ce
Show file tree
Hide file tree
Showing 4 changed files with 19 additions and 18 deletions.
8 changes: 4 additions & 4 deletions src/category-theory/dependent-products-of-categories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -59,9 +59,9 @@ module _
obj-Π-Category : UU (l1 ⊔ l2)
obj-Π-Category = obj-Category Π-Category

hom-Π-Category :
hom-set-Π-Category :
obj-Π-Category obj-Π-Category Set (l1 ⊔ l3)
hom-Π-Category = hom-set-Category Π-Category
hom-set-Π-Category = hom-set-Category Π-Category

hom-Π-Category :
obj-Π-Category obj-Π-Category UU (l1 ⊔ l3)
Expand All @@ -85,7 +85,7 @@ module _
associative-comp-hom-Category Π-Category

associative-composition-structure-Π-Category :
associative-composition-structure-Set hom-Π-Category
associative-composition-structure-Set hom-set-Π-Category
associative-composition-structure-Π-Category =
associative-composition-structure-Category Π-Category

Expand All @@ -108,7 +108,7 @@ module _

is-unital-Π-Category :
is-unital-composition-structure-Set
hom-Π-Category
hom-set-Π-Category
associative-composition-structure-Π-Category
is-unital-Π-Category = is-unital-composition-structure-Category Π-Category

Expand Down
13 changes: 7 additions & 6 deletions src/category-theory/dependent-products-of-precategories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -39,11 +39,12 @@ module _
obj-Π-Precategory : UU (l1 ⊔ l2)
obj-Π-Precategory = (i : I) obj-Precategory (C i)

hom-Π-Precategory : obj-Π-Precategory obj-Π-Precategory Set (l1 ⊔ l3)
hom-Π-Precategory x y = Π-Set' I (λ i hom-set-Precategory (C i) (x i) (y i))
hom-set-Π-Precategory : obj-Π-Precategory obj-Π-Precategory Set (l1 ⊔ l3)
hom-set-Π-Precategory x y =
Π-Set' I (λ i hom-set-Precategory (C i) (x i) (y i))

hom-Π-Precategory : obj-Π-Precategory obj-Π-Precategory UU (l1 ⊔ l3)
hom-Π-Precategory x y = type-Set (hom-Π-Precategory x y)
hom-Π-Precategory x y = type-Set (hom-set-Π-Precategory x y)

comp-hom-Π-Precategory :
{x y z : obj-Π-Precategory}
Expand All @@ -63,7 +64,7 @@ module _
eq-htpy (λ i associative-comp-hom-Precategory (C i) (h i) (g i) (f i))

associative-composition-structure-Π-Precategory :
associative-composition-structure-Set hom-Π-Precategory
associative-composition-structure-Set hom-set-Π-Precategory
pr1 associative-composition-structure-Π-Precategory = comp-hom-Π-Precategory
pr2 associative-composition-structure-Π-Precategory =
associative-comp-hom-Π-Precategory
Expand All @@ -86,15 +87,15 @@ module _

is-unital-Π-Precategory :
is-unital-composition-structure-Set
hom-Π-Precategory
hom-set-Π-Precategory
associative-composition-structure-Π-Precategory
pr1 is-unital-Π-Precategory x = id-hom-Π-Precategory
pr1 (pr2 is-unital-Π-Precategory) = left-unit-law-comp-hom-Π-Precategory
pr2 (pr2 is-unital-Π-Precategory) = right-unit-law-comp-hom-Π-Precategory

Π-Precategory : Precategory (l1 ⊔ l2) (l1 ⊔ l3)
pr1 Π-Precategory = obj-Π-Precategory
pr1 (pr2 Π-Precategory) = hom-Π-Precategory
pr1 (pr2 Π-Precategory) = hom-set-Π-Precategory
pr1 (pr2 (pr2 Π-Precategory)) =
associative-composition-structure-Π-Precategory
pr2 (pr2 (pr2 Π-Precategory)) = is-unital-Π-Precategory
Expand Down
8 changes: 4 additions & 4 deletions src/category-theory/function-categories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -47,9 +47,9 @@ module _
obj-function-Category : UU (l1 ⊔ l2)
obj-function-Category = obj-Category function-Category

hom-function-Category :
hom-set-function-Category :
obj-function-Category obj-function-Category Set (l1 ⊔ l3)
hom-function-Category = hom-set-Category function-Category
hom-set-function-Category = hom-set-Category function-Category

hom-function-Category :
obj-function-Category obj-function-Category UU (l1 ⊔ l3)
Expand All @@ -73,7 +73,7 @@ module _
associative-comp-hom-Category function-Category

associative-composition-structure-function-Category :
associative-composition-structure-Set hom-function-Category
associative-composition-structure-Set hom-set-function-Category
associative-composition-structure-function-Category =
associative-composition-structure-Category function-Category

Expand All @@ -96,7 +96,7 @@ module _

is-unital-function-Category :
is-unital-composition-structure-Set
hom-function-Category
hom-set-function-Category
associative-composition-structure-function-Category
is-unital-function-Category =
is-unital-composition-structure-Category function-Category
Expand Down
8 changes: 4 additions & 4 deletions src/category-theory/function-precategories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -39,9 +39,9 @@ module _
obj-function-Precategory : UU (l1 ⊔ l2)
obj-function-Precategory = obj-Precategory function-Precategory

hom-function-Precategory :
hom-set-function-Precategory :
obj-function-Precategory obj-function-Precategory Set (l1 ⊔ l3)
hom-function-Precategory = hom-set-Precategory function-Precategory
hom-set-function-Precategory = hom-set-Precategory function-Precategory

hom-function-Precategory :
obj-function-Precategory obj-function-Precategory UU (l1 ⊔ l3)
Expand All @@ -65,7 +65,7 @@ module _
associative-comp-hom-Precategory function-Precategory

associative-composition-structure-function-Precategory :
associative-composition-structure-Set hom-function-Precategory
associative-composition-structure-Set hom-set-function-Precategory
associative-composition-structure-function-Precategory =
associative-composition-structure-Precategory function-Precategory

Expand All @@ -88,7 +88,7 @@ module _

is-unital-function-Precategory :
is-unital-composition-structure-Set
hom-function-Precategory
hom-set-function-Precategory
associative-composition-structure-function-Precategory
is-unital-function-Precategory =
is-unital-composition-structure-Precategory function-Precategory
Expand Down

0 comments on commit 3a646ce

Please sign in to comment.