Skip to content

Commit

Permalink
rename hom-sets to hom-set
Browse files Browse the repository at this point in the history
  • Loading branch information
fredrik-bakke committed Sep 21, 2023
1 parent fd15e21 commit 3bfc7dd
Show file tree
Hide file tree
Showing 110 changed files with 726 additions and 725 deletions.
60 changes: 30 additions & 30 deletions src/category-theory/adjunctions-large-precategories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -65,10 +65,10 @@ module _
equiv-is-adjoint-pair-Large-Precategory :
{l1 l2 : Level} (X : obj-Large-Precategory C l1)
(Y : obj-Large-Precategory D l2)
( type-hom-Large-Precategory C
( hom-Large-Precategory C
( X)
( map-obj-functor-Large-Precategory G Y)) ≃
( type-hom-Large-Precategory D
( hom-Large-Precategory D
( map-obj-functor-Large-Precategory F X)
( Y))
naturality-equiv-is-adjoint-pair-Large-Precategory :
Expand All @@ -77,8 +77,8 @@ module _
{ X2 : obj-Large-Precategory C l2}
{ Y1 : obj-Large-Precategory D l3}
{ Y2 : obj-Large-Precategory D l4}
( f : type-hom-Large-Precategory C X2 X1)
( g : type-hom-Large-Precategory D Y1 Y2)
( f : hom-Large-Precategory C X2 X1)
( g : hom-Large-Precategory D Y1 Y2)
coherence-square-maps
( map-equiv (equiv-is-adjoint-pair-Large-Precategory X1 Y1))
( λ h
Expand All @@ -98,8 +98,8 @@ module _
map-equiv-is-adjoint-pair-Large-Precategory :
(H : is-adjoint-pair-Large-Precategory) {l1 l2 : Level}
(X : obj-Large-Precategory C l1) (Y : obj-Large-Precategory D l2)
( type-hom-Large-Precategory C X (map-obj-functor-Large-Precategory G Y))
( type-hom-Large-Precategory D (map-obj-functor-Large-Precategory F X) Y)
( hom-Large-Precategory C X (map-obj-functor-Large-Precategory G Y))
( hom-Large-Precategory D (map-obj-functor-Large-Precategory F X) Y)
map-equiv-is-adjoint-pair-Large-Precategory H X Y =
map-equiv (equiv-is-adjoint-pair-Large-Precategory H X Y)

Expand All @@ -108,17 +108,17 @@ module _
{l1 l2 : Level}
(X : obj-Large-Precategory C l1)
(Y : obj-Large-Precategory D l2)
( type-hom-Large-Precategory D (map-obj-functor-Large-Precategory F X) Y) ≃
( type-hom-Large-Precategory C X (map-obj-functor-Large-Precategory G Y))
( hom-Large-Precategory D (map-obj-functor-Large-Precategory F X) Y) ≃
( hom-Large-Precategory C X (map-obj-functor-Large-Precategory G Y))
inv-equiv-is-adjoint-pair-Large-Precategory H X Y =
inv-equiv (equiv-is-adjoint-pair-Large-Precategory H X Y)

map-inv-equiv-is-adjoint-pair-Large-Precategory :
(H : is-adjoint-pair-Large-Precategory) {l1 l2 : Level}
(X : obj-Large-Precategory C l1)
(Y : obj-Large-Precategory D l2)
( type-hom-Large-Precategory D (map-obj-functor-Large-Precategory F X) Y)
( type-hom-Large-Precategory C X (map-obj-functor-Large-Precategory G Y))
( hom-Large-Precategory D (map-obj-functor-Large-Precategory F X) Y)
( hom-Large-Precategory C X (map-obj-functor-Large-Precategory G Y))
map-inv-equiv-is-adjoint-pair-Large-Precategory H X Y =
map-inv-equiv (equiv-is-adjoint-pair-Large-Precategory H X Y)

Expand All @@ -129,8 +129,8 @@ module _
{ X2 : obj-Large-Precategory C l2}
{ Y1 : obj-Large-Precategory D l3}
{ Y2 : obj-Large-Precategory D l4}
( f : type-hom-Large-Precategory C X2 X1)
( g : type-hom-Large-Precategory D Y1 Y2)
( f : hom-Large-Precategory C X2 X1)
( g : hom-Large-Precategory D Y1 Y2)
coherence-square-maps
( map-inv-equiv-is-adjoint-pair-Large-Precategory H X1 Y1)
( λ h
Expand Down Expand Up @@ -227,8 +227,8 @@ module _
{l1 l2 : Level}
{X : obj-Large-Precategory C l1}
{Y : obj-Large-Precategory C l2}
type-hom-Large-Precategory C X Y
type-hom-Large-Precategory D
hom-Large-Precategory C X Y
hom-Large-Precategory D
( obj-left-adjoint-Adjunction-Large-Precategory FG X)
( obj-left-adjoint-Adjunction-Large-Precategory FG Y)
hom-left-adjoint-Adjunction-Large-Precategory FG =
Expand Down Expand Up @@ -261,8 +261,8 @@ module _
{l1 l2 : Level}
{X : obj-Large-Precategory D l1}
{Y : obj-Large-Precategory D l2}
type-hom-Large-Precategory D X Y
type-hom-Large-Precategory C
hom-Large-Precategory D X Y
hom-Large-Precategory C
( obj-right-adjoint-Adjunction-Large-Precategory FG X)
( obj-right-adjoint-Adjunction-Large-Precategory FG Y)
hom-right-adjoint-Adjunction-Large-Precategory FG =
Expand All @@ -285,10 +285,10 @@ module _
{l1 l2 : Level}
(X : obj-Large-Precategory C l1)
(Y : obj-Large-Precategory D l2)
type-hom-Large-Precategory C
hom-Large-Precategory C
( X)
( obj-right-adjoint-Adjunction-Large-Precategory FG Y) ≃
type-hom-Large-Precategory D
hom-Large-Precategory D
( obj-left-adjoint-Adjunction-Large-Precategory FG X)
( Y)
equiv-is-adjoint-pair-Adjunction-Large-Precategory FG =
Expand All @@ -300,10 +300,10 @@ module _
{l1 l2 : Level}
(X : obj-Large-Precategory C l1)
(Y : obj-Large-Precategory D l2)
type-hom-Large-Precategory C
hom-Large-Precategory C
( X)
( obj-right-adjoint-Adjunction-Large-Precategory FG Y)
type-hom-Large-Precategory D
hom-Large-Precategory D
( obj-left-adjoint-Adjunction-Large-Precategory FG X)
( Y)
map-equiv-is-adjoint-pair-Adjunction-Large-Precategory FG =
Expand All @@ -319,8 +319,8 @@ module _
{X2 : obj-Large-Precategory C l2}
{Y1 : obj-Large-Precategory D l3}
{Y2 : obj-Large-Precategory D l4}
(f : type-hom-Large-Precategory C X2 X1)
(g : type-hom-Large-Precategory D Y1 Y2)
(f : hom-Large-Precategory C X2 X1)
(g : hom-Large-Precategory D Y1 Y2)
coherence-square-maps
( map-equiv-is-adjoint-pair-Adjunction-Large-Precategory FG X1 Y1)
( λ h
Expand All @@ -343,10 +343,10 @@ module _
{l1 l2 : Level}
(X : obj-Large-Precategory C l1)
(Y : obj-Large-Precategory D l2)
( type-hom-Large-Precategory D
( hom-Large-Precategory D
( obj-left-adjoint-Adjunction-Large-Precategory FG X)
( Y)) ≃
( type-hom-Large-Precategory C
( hom-Large-Precategory C
( X)
( obj-right-adjoint-Adjunction-Large-Precategory FG Y))
inv-equiv-is-adjoint-pair-Adjunction-Large-Precategory FG X Y =
Expand All @@ -357,10 +357,10 @@ module _
{l1 l2 : Level}
(X : obj-Large-Precategory C l1)
(Y : obj-Large-Precategory D l2)
type-hom-Large-Precategory D
hom-Large-Precategory D
( obj-left-adjoint-Adjunction-Large-Precategory FG X)
( Y)
type-hom-Large-Precategory C
hom-Large-Precategory C
( X)
( obj-right-adjoint-Adjunction-Large-Precategory FG Y)
map-inv-equiv-is-adjoint-pair-Adjunction-Large-Precategory FG X Y =
Expand All @@ -373,8 +373,8 @@ module _
{X2 : obj-Large-Precategory C l2}
{Y1 : obj-Large-Precategory D l3}
{Y2 : obj-Large-Precategory D l4}
(f : type-hom-Large-Precategory C X2 X1)
(g : type-hom-Large-Precategory D Y1 Y2)
(f : hom-Large-Precategory C X2 X1)
(g : hom-Large-Precategory D Y1 Y2)
coherence-square-maps
( map-inv-equiv-is-adjoint-pair-Adjunction-Large-Precategory FG X1 Y1)
( λ h
Expand Down Expand Up @@ -489,7 +489,7 @@ module _
where
η :
{l : Level} (X : obj-Large-Precategory C l)
type-hom-Large-Precategory C X
hom-Large-Precategory C X
( obj-right-adjoint-Adjunction-Large-Precategory C D FG
( obj-left-adjoint-Adjunction-Large-Precategory C D FG X))
η =
Expand Down Expand Up @@ -576,7 +576,7 @@ Given an adjoint pair `F ⊣ G`, we can construct a natural transformation
where
ε :
{l : Level} (Y : obj-Large-Precategory D l)
type-hom-Large-Precategory D
hom-Large-Precategory D
( obj-left-adjoint-Adjunction-Large-Precategory C D FG
( obj-right-adjoint-Adjunction-Large-Precategory C D FG Y))
( Y)
Expand Down
2 changes: 1 addition & 1 deletion src/category-theory/anafunctors-categories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@ module _
(X Y : obj-Category C) (U : obj-Category D)
(u : object-anafunctor-Category X U)
(V : obj-Category D) (v : object-anafunctor-Category Y V)
type-hom-Category C X Y type-hom-Category D U V
hom-Category C X Y hom-Category D U V
hom-anafunctor-Category =
hom-anafunctor-Precategory
( precategory-Category C)
Expand Down
8 changes: 4 additions & 4 deletions src/category-theory/anafunctors-precategories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@ anafunctor-Precategory l C D =
Σ ( ( X Y : obj-Precategory C)
( U : obj-Precategory D) (u : F₀ X U)
( V : obj-Precategory D) (v : F₀ Y V)
( f : type-hom-Precategory C X Y) type-hom-Precategory D U V)
( f : hom-Precategory C X Y) hom-Precategory D U V)
( λ F₁
( ( X : obj-Precategory C)
type-trunc-Prop (Σ (obj-Precategory D) (F₀ X))) ×
Expand All @@ -50,8 +50,8 @@ anafunctor-Precategory l C D =
( U : obj-Precategory D) (u : F₀ X U)
( V : obj-Precategory D) (v : F₀ Y V)
( W : obj-Precategory D) (w : F₀ Z W)
( g : type-hom-Precategory C Y Z)
( f : type-hom-Precategory C X Y)
( g : hom-Precategory C Y Z)
( f : hom-Precategory C X Y)
( F₁ X Z U u W w (comp-hom-Precategory C g f)) =
( comp-hom-Precategory D
( F₁ Y Z V v W w g)
Expand All @@ -69,7 +69,7 @@ module _
(X Y : obj-Precategory C)
(U : obj-Precategory D) (u : object-anafunctor-Precategory X U)
(V : obj-Precategory D) (v : object-anafunctor-Precategory Y V)
type-hom-Precategory C X Y type-hom-Precategory D U V
hom-Precategory C X Y hom-Precategory D U V
hom-anafunctor-Precategory = pr1 (pr2 F)
```

Expand Down
40 changes: 20 additions & 20 deletions src/category-theory/categories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -61,54 +61,54 @@ module _
obj-Category : UU l1
obj-Category = obj-Precategory precategory-Category

hom-Category : obj-Category obj-Category Set l2
hom-Category = hom-Precategory precategory-Category
hom-set-Category : obj-Category obj-Category Set l2
hom-set-Category = hom-set-Precategory precategory-Category

type-hom-Category : obj-Category obj-Category UU l2
type-hom-Category = type-hom-Precategory precategory-Category
hom-Category : obj-Category obj-Category UU l2
hom-Category = hom-Precategory precategory-Category

is-set-type-hom-Category :
(x y : obj-Category) is-set (type-hom-Category x y)
is-set-type-hom-Category = is-set-type-hom-Precategory precategory-Category
is-set-hom-Category :
(x y : obj-Category) is-set (hom-Category x y)
is-set-hom-Category = is-set-hom-Precategory precategory-Category

comp-hom-Category :
{x y z : obj-Category}
type-hom-Category y z type-hom-Category x y type-hom-Category x z
hom-Category y z hom-Category x y hom-Category x z
comp-hom-Category = comp-hom-Precategory precategory-Category

associative-comp-hom-Category :
{x y z w : obj-Category}
(h : type-hom-Category z w)
(g : type-hom-Category y z)
(f : type-hom-Category x y)
(h : hom-Category z w)
(g : hom-Category y z)
(f : hom-Category x y)
comp-hom-Category (comp-hom-Category h g) f =
comp-hom-Category h (comp-hom-Category g f)
associative-comp-hom-Category =
associative-comp-hom-Precategory precategory-Category

associative-composition-structure-Category :
associative-composition-structure-Set hom-Category
associative-composition-structure-Set hom-set-Category
associative-composition-structure-Category =
associative-composition-structure-Precategory precategory-Category

id-hom-Category : {x : obj-Category} type-hom-Category x x
id-hom-Category : {x : obj-Category} hom-Category x x
id-hom-Category = id-hom-Precategory precategory-Category

left-unit-law-comp-hom-Category :
{x y : obj-Category} (f : type-hom-Category x y)
{x y : obj-Category} (f : hom-Category x y)
comp-hom-Category id-hom-Category f = f
left-unit-law-comp-hom-Category =
left-unit-law-comp-hom-Precategory precategory-Category

right-unit-law-comp-hom-Category :
{x y : obj-Category} (f : type-hom-Category x y)
{x y : obj-Category} (f : hom-Category x y)
comp-hom-Category f id-hom-Category = f
right-unit-law-comp-hom-Category =
right-unit-law-comp-hom-Precategory precategory-Category

is-unital-composition-structure-Category :
is-unital-composition-structure-Set
hom-Category
hom-set-Category
associative-composition-structure-Category
is-unital-composition-structure-Category =
is-unital-composition-structure-Precategory precategory-Category
Expand All @@ -123,8 +123,8 @@ module _
```agda
precomp-hom-Category :
{l1 l2 : Level} (C : Category l1 l2) {x y : obj-Category C}
(f : type-hom-Category C x y) (z : obj-Category C)
type-hom-Category C y z type-hom-Category C x z
(f : hom-Category C x y) (z : obj-Category C)
hom-Category C y z hom-Category C x z
precomp-hom-Category C = precomp-hom-Precategory (precategory-Category C)
```

Expand All @@ -133,8 +133,8 @@ precomp-hom-Category C = precomp-hom-Precategory (precategory-Category C)
```agda
postcomp-hom-Category :
{l1 l2 : Level} (C : Category l1 l2) {x y : obj-Category C}
(f : type-hom-Category C x y) (z : obj-Category C)
type-hom-Category C z x type-hom-Category C z y
(f : hom-Category C x y) (z : obj-Category C)
hom-Category C z x hom-Category C z y
postcomp-hom-Category C = postcomp-hom-Precategory (precategory-Category C)
```

Expand Down
32 changes: 16 additions & 16 deletions src/category-theory/category-of-functors.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -48,21 +48,21 @@ module _
( precategory-Category C)
( precategory-Category D)

is-category-functor-category-Precategory :
is-category-Precategory functor-category-Precategory
is-category-functor-category-Precategory F G =
is-equiv-htpy-equiv
( equiv-iso-functor-natural-isomorphism-Precategory
( precategory-Category C)
( precategory-Category D)
( F)
( G) ∘e
{! !} ∘e
( extensionality-functor-Category' C D F G))
{! !}
-- is-category-functor-category-Precategory :
-- is-category-Precategory functor-category-Precategory
-- is-category-functor-category-Precategory F G =
-- is-equiv-htpy-equiv
-- ( equiv-iso-functor-natural-isomorphism-Precategory
-- ( precategory-Category C)
-- ( precategory-Category D)
-- ( F)
-- ( G) ∘e
-- {! !} ∘e
-- ( extensionality-functor-Category' C D F G))
-- {! !}

functor-category-Category :
Category (l1 ⊔ l2 ⊔ l3 ⊔ l4) (l1 ⊔ l2 ⊔ l4)
pr1 functor-category-Category = functor-category-Precategory
pr2 functor-category-Category = is-category-functor-category-Precategory
-- functor-category-Category :
-- Category (l1 ⊔ l2 ⊔ l3 ⊔ l4) (l1 ⊔ l2 ⊔ l4)
-- pr1 functor-category-Category = functor-category-Precategory
-- pr2 functor-category-Category = is-category-functor-category-Precategory
```
Loading

0 comments on commit 3bfc7dd

Please sign in to comment.