-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
update layer and batch centering + pytests
- Loading branch information
1 parent
e826d0e
commit 3ea5d10
Showing
4 changed files
with
320 additions
and
40 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,254 @@ | ||
# -*- coding: utf-8 -*- | ||
# Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All | ||
# rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry, | ||
# CRIAQ and ANITI - https://www.deel.ai/ | ||
# | ||
# Permission is hereby granted, free of charge, to any person obtaining a copy | ||
# of this software and associated documentation files (the "Software"), to deal | ||
# in the Software without restriction, including without limitation the rights | ||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
# copies of the Software, and to permit persons to whom the Software is | ||
# furnished to do so, subject to the following conditions: | ||
# | ||
# The above copyright notice and this permission notice shall be included in all | ||
# copies or substantial portions of the Software. | ||
# | ||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
# SOFTWARE. | ||
# Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All | ||
# rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry, | ||
# CRIAQ and ANITI - https://www.deel.ai/ | ||
# ===================================================================================== | ||
import os | ||
import pytest | ||
from functools import partial | ||
|
||
import numpy as np | ||
|
||
from . import utils_framework as uft | ||
|
||
from .utils_framework import BatchCentering, LayerCentering | ||
|
||
|
||
def check_serialization(layer_type, layer_params, input_shape=(10,)): | ||
m = uft.generate_k_lip_model(layer_type, layer_params, input_shape=input_shape, k=1) | ||
if m is None: | ||
pytest.skip() | ||
loss, optimizer, _ = uft.compile_model( | ||
m, | ||
optimizer=uft.get_instance_framework(uft.SGD, inst_params={"model": m}), | ||
loss=uft.CategoricalCrossentropy(from_logits=True), | ||
) | ||
name = layer_type.__class__.__name__ | ||
path = os.path.join("logs", "normalization", name) | ||
xnp = np.random.uniform(-10, 10, (255,) + input_shape) | ||
x = uft.to_tensor(xnp) | ||
y1 = m(x) | ||
uft.save_model(m, path) | ||
m2 = uft.load_model( | ||
path, | ||
compile=True, | ||
layer_type=layer_type, | ||
layer_params=layer_params, | ||
input_shape=input_shape, | ||
k=1, | ||
) | ||
y2 = m2(x) | ||
np.testing.assert_allclose(uft.to_numpy(y1), uft.to_numpy(y2)) | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"size, input_shape, bias", | ||
[ | ||
(4, (3, 4, 8, 8), False), | ||
(4, (3, 4, 8, 8), True), | ||
], | ||
) | ||
def test_LayerCentering(size, input_shape, bias): | ||
"""evaluate layerbatch centering""" | ||
input_shape = uft.to_framework_channel(input_shape) | ||
x = np.arange(np.prod(input_shape)).reshape(input_shape) | ||
bn = uft.get_instance_framework(LayerCentering, {"size": size, "bias": bias}) | ||
|
||
mean_x = np.mean(x, axis=(2, 3)) | ||
mean_shape = (-1, size, 1, 1) | ||
x = uft.to_tensor(x) | ||
y = bn(x) | ||
np.testing.assert_allclose( | ||
uft.to_numpy(y), x - np.reshape(mean_x, mean_shape), atol=1e-5 | ||
) | ||
y = bn(2 * x) | ||
np.testing.assert_allclose( | ||
uft.to_numpy(y), 2 * x - 2 * np.reshape(mean_x, mean_shape), atol=1e-5 | ||
) # keep substract batch mean | ||
bn.eval() | ||
y = bn(2 * x) | ||
np.testing.assert_allclose( | ||
uft.to_numpy(y), 2 * x - 2 * np.reshape(mean_x, mean_shape), atol=1e-5 | ||
) # eval mode use running_mean | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"size, input_shape, bias", | ||
[ | ||
(4, (3, 4), False), | ||
(4, (3, 4), True), | ||
(4, (3, 4, 8, 8), False), | ||
(4, (3, 4, 8, 8), True), | ||
], | ||
) | ||
def test_BatchCentering(size, input_shape, bias): | ||
"""evaluate layerbatch centering""" | ||
input_shape = uft.to_framework_channel(input_shape) | ||
x = np.arange(np.prod(input_shape)).reshape(input_shape) | ||
bn = uft.get_instance_framework(BatchCentering, {"size": size, "bias": bias}) | ||
bn_mom = bn.momentum | ||
if len(input_shape) == 2: | ||
mean_x = np.mean(x, axis=0) | ||
mean_shape = (1, size) | ||
else: | ||
mean_x = np.mean(x, axis=(0, 2, 3)) | ||
mean_shape = (1, size, 1, 1) | ||
x = uft.to_tensor(x) | ||
y = bn(x) | ||
np.testing.assert_allclose(bn.running_mean, mean_x, atol=1e-5) | ||
np.testing.assert_allclose( | ||
uft.to_numpy(y), x - np.reshape(mean_x, mean_shape), atol=1e-5 | ||
) | ||
y = bn(2 * x) | ||
new_runningmean = mean_x * (1 - bn_mom) + 2 * mean_x * bn_mom | ||
np.testing.assert_allclose(bn.running_mean, new_runningmean, atol=1e-5) | ||
np.testing.assert_allclose( | ||
uft.to_numpy(y), 2 * x - 2 * np.reshape(mean_x, mean_shape), atol=1e-5 | ||
) # keep substract batch mean | ||
bn.eval() | ||
y = bn(2 * x) | ||
np.testing.assert_allclose( | ||
bn.running_mean, new_runningmean, atol=1e-5 | ||
) # eval mode running mean freezed | ||
np.testing.assert_allclose( | ||
uft.to_numpy(y), 2 * x - np.reshape(new_runningmean, mean_shape), atol=1e-5 | ||
) # eval mode use running_mean | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"norm_type", | ||
[LayerCentering, BatchCentering], | ||
) | ||
@pytest.mark.parametrize( | ||
"size, input_shape, bias", | ||
[ | ||
(10, (10,), False), | ||
(10, (10,), True), | ||
(7, (7, 8, 8), False), | ||
(7, (7, 8, 8), True), | ||
], | ||
) | ||
def test_Normalization_serialization(norm_type, size, input_shape, bias): | ||
# Check serialization | ||
check_serialization( | ||
norm_type, layer_params={"size": size, "bias": bias}, input_shape=input_shape | ||
) | ||
|
||
|
||
def linear_generator(batch_size, input_shape: tuple): | ||
""" | ||
Generate data according to a linear kernel | ||
Args: | ||
batch_size: size of each batch | ||
input_shape: shape of the desired input | ||
Returns: | ||
a generator for the data | ||
""" | ||
input_shape = tuple(input_shape) | ||
while True: | ||
# pick random sample in [0, 1] with the input shape | ||
batch_x = np.array( | ||
np.random.uniform(-10, 10, (batch_size,) + input_shape), dtype=np.float16 | ||
) | ||
# apply the k lip linear transformation | ||
batch_y = batch_x | ||
yield batch_x, batch_y | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"norm_type", | ||
[LayerCentering, BatchCentering], | ||
) | ||
@pytest.mark.parametrize( | ||
"size, input_shape, bias", | ||
[ | ||
(10, (10,), True), | ||
(7, (7, 8, 8), True), | ||
], | ||
) | ||
def test_Normalization_bias(norm_type, size, input_shape, bias): | ||
m = uft.generate_k_lip_model( | ||
norm_type, | ||
layer_params={"size": size, "bias": bias}, | ||
input_shape=input_shape, | ||
k=1, | ||
) | ||
if m is None: | ||
pytest.skip() | ||
loss, optimizer, _ = uft.compile_model( | ||
m, | ||
optimizer=uft.get_instance_framework(uft.SGD, inst_params={"model": m}), | ||
loss=uft.CategoricalCrossentropy(from_logits=True), | ||
) | ||
batch_size = 10 | ||
bb = uft.to_numpy(uft.get_layer_by_index(m, 0).bias) | ||
np.testing.assert_allclose(bb, np.zeros((size,)), atol=1e-5) | ||
|
||
traind_ds = linear_generator(batch_size, input_shape) | ||
uft.train( | ||
traind_ds, | ||
m, | ||
loss, | ||
optimizer, | ||
2, | ||
batch_size, | ||
steps_per_epoch=10, | ||
) | ||
|
||
bb = uft.to_numpy(uft.get_layer_by_index(m, 0).bias) | ||
assert np.linalg.norm(bb) != 0.0 | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"size, input_shape, bias", | ||
[ | ||
(4, (3, 4), False), | ||
(4, (3, 4), True), | ||
(4, (3, 4, 8, 8), False), | ||
(4, (3, 4, 8, 8), True), | ||
], | ||
) | ||
def test_BatchCentering_runningmean(size, input_shape, bias): | ||
"""evaluate batch centering convergence of running mean""" | ||
input_shape = uft.to_framework_channel(input_shape) | ||
# start with 0 to set up running mean to zero | ||
x = np.zeros(input_shape) | ||
bn = uft.get_instance_framework(BatchCentering, {"size": size, "bias": bias}) | ||
x = uft.to_tensor(x) | ||
y = bn(x) | ||
|
||
np.testing.assert_allclose(bn.running_mean, 0.0, atol=1e-5) | ||
|
||
x = np.random.normal(0.0, 1.0, input_shape) | ||
if len(input_shape) == 2: | ||
mean_x = np.mean(x, axis=0) | ||
else: | ||
mean_x = np.mean(x, axis=(0, 2, 3)) | ||
x = uft.to_tensor(x) | ||
for _ in range(1000): | ||
y = bn(x) | ||
|
||
np.testing.assert_allclose(bn.running_mean, mean_x, atol=1e-5) |
Oops, something went wrong.