-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Mathieu SERRURIER
authored and
Franck Mamalet
committed
Oct 21, 2024
1 parent
cd56dff
commit e826d0e
Showing
1 changed file
with
80 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torch.distributed as dist | ||
|
||
class LayerCentering(nn.Module): | ||
def __init__(self,size = -1, dim=[-2,-1],bias = True): | ||
super(LayerCentering, self).__init__() | ||
self.bias = bias | ||
if isinstance(size, tuple): | ||
self.alpha = nn.Parameter(torch.zeros(size), requires_grad=True) | ||
else: | ||
self.alpha = nn.Parameter(torch.zeros(1,size,1,1), requires_grad=True) | ||
self.dim = dim | ||
|
||
def forward(self, x): | ||
mean = x.mean(dim=self.dim, keepdim=True) | ||
if self.bias: | ||
return x - mean+ self.alpha | ||
return x - mean | ||
|
||
|
||
class LayerCentering2D(LayerCentering): | ||
def __init__(self, size = 1, dim=[-2,-1]): | ||
super(LayerCentering2D, self).__init__(size = size,dim=[-2,-1]) | ||
|
||
|
||
class BatchCentering(nn.Module): | ||
def __init__(self, size =1, dim=[0,-2,-1], momentum=0.05): | ||
super(BatchCentering, self).__init__() | ||
self.dim = dim | ||
self.momentum = momentum | ||
if isinstance(size, tuple): | ||
self.register_buffer("running_mean", torch.zeros(size)) | ||
else: | ||
self.register_buffer("running_mean", torch.zeros(1,size,1,1)) | ||
|
||
self.first = True | ||
|
||
def forward(self, x): | ||
|
||
if self.training: | ||
mean = x.mean(dim=self.dim, keepdim=True) | ||
#print(mean.shape) | ||
with torch.no_grad(): | ||
if self.first: | ||
#print("first") | ||
self.running_mean = mean | ||
self.first = False | ||
else: | ||
self.running_mean = ( | ||
1 - self.momentum | ||
) * self.running_mean + self.momentum * mean | ||
if dist.is_initialized(): | ||
dist.all_reduce(self.running_mean, op=dist.ReduceOp.SUM) | ||
self.running_mean /= dist.get_world_size() | ||
|
||
else : | ||
mean = self.running_mean | ||
return x - mean | ||
|
||
class BatchCenteringBiases(BatchCentering): | ||
def __init__(self, size =1, dim=[0,-2,-1], momentum=0.05): | ||
super(BatchCenteringBiases, self).__init__(size = size, dim = dim, momentum = momentum) | ||
if isinstance(size, tuple): | ||
self.alpha = nn.Parameter(torch.zeros(size), requires_grad=True) | ||
else: | ||
self.alpha = nn.Parameter(torch.zeros(1,size,1,1), requires_grad=True) | ||
|
||
def forward(self, x): | ||
#print(x.mean(dim=self.dim, keepdim=True).abs().mean().cpu().numpy(), self.running_mean.abs().cpu().mean().numpy(), self.alpha.abs().mean().cpu().numpy()) | ||
#print(x.mean(dim=self.dim, keepdim=True).abs().mean().cpu().numpy(),(x.mean(dim=self.dim, keepdim=True)-self.running_mean).abs().mean().cpu().numpy()) | ||
return super().forward(x) + self.alpha | ||
|
||
class BatchCenteringBiases2D(BatchCenteringBiases): | ||
def __init__(self, size =1, momentum=0.05): | ||
super(BatchCenteringBiases2D, self).__init__(size = size, dim=[0,-2,-1],momentum=momentum) | ||
|
||
class BatchCentering2D(BatchCentering): | ||
def __init__(self, size =1, momentum=0.05): | ||
super(BatchCentering2D, self).__init__(size = size, dim=[0,-2,-1],momentum=momentum) |