Skip to content
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.rst
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ CHANGELOG
* feature: Add APIs to export Airflow training and tuning config
* doc-fix: Fix typos in tensorflow serving documentation
* doc-fix: Add estimator base classes to API docs
* feature: Add support for Chainer 5.0

1.14.2
======
Expand Down
2 changes: 1 addition & 1 deletion README.rst
Original file line number Diff line number Diff line change
Expand Up @@ -358,7 +358,7 @@ Chainer SageMaker Estimators

By using Chainer SageMaker ``Estimators``, you can train and host Chainer models on Amazon SageMaker.

Supported versions of Chainer: ``4.0.0``, ``4.1.0``.
Supported versions of Chainer: ``4.0.0``, ``4.1.0``, ``5.0.0``.

We recommend that you use the latest supported version, because that's where we focus most of our development efforts.

Expand Down
8 changes: 4 additions & 4 deletions src/sagemaker/chainer/README.rst
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ Chainer SageMaker Estimators and Models

With Chainer Estimators, you can train and host Chainer models on Amazon SageMaker.

Supported versions of Chainer: ``4.0.0``, ``4.1.0``
Supported versions of Chainer: ``4.0.0``, ``4.1.0``, ``5.0.0``

You can visit the Chainer repository at https://github.com/chainer/chainer.

Expand Down Expand Up @@ -32,7 +32,7 @@ Suppose that you already have an Chainer training script called
role='SageMakerRole',
train_instance_type='ml.p3.2xlarge',
train_instance_count=1,
framework_version='4.1.0')
framework_version='5.0.0')
chainer_estimator.fit('s3://bucket/path/to/training/data')

Where the S3 URL is a path to your training data, within Amazon S3. The constructor keyword arguments define how
Expand Down Expand Up @@ -111,7 +111,7 @@ directories ('train' and 'test').
chainer_estimator = Chainer('chainer-train.py',
train_instance_type='ml.p3.2xlarge',
train_instance_count=1,
framework_version='4.1.0',
framework_version='5.0.0',
hyperparameters = {'epochs': 20, 'batch-size': 64, 'learning-rate': 0.1})
chainer_estimator.fit({'train': 's3://my-data-bucket/path/to/my/training/data',
'test': 's3://my-data-bucket/path/to/my/test/data'})
Expand Down Expand Up @@ -285,7 +285,7 @@ operation.
chainer_estimator = Chainer(entry_point='train_and_deploy.py',
train_instance_type='ml.p3.2xlarge',
train_instance_count=1,
framework_version='4.1.0')
framework_version='5.0.0')
chainer_estimator.fit('s3://my_bucket/my_training_data/')

# Deploy my estimator to a SageMaker Endpoint and get a Predictor
Expand Down
2 changes: 1 addition & 1 deletion src/sagemaker/chainer/defaults.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,4 +12,4 @@
# language governing permissions and limitations under the License.
from __future__ import absolute_import

CHAINER_VERSION = '4.1.0'
CHAINER_VERSION = '5.0.0'
2 changes: 1 addition & 1 deletion tests/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,7 +96,7 @@ def pytorch_version(request):
return request.param


@pytest.fixture(scope='module', params=['4.0', '4.0.0', '4.1', '4.1.0'])
@pytest.fixture(scope='module', params=['4.0', '4.0.0', '4.1', '4.1.0', '5.0', '5.0.0'])
def chainer_version(request):
return request.param

Expand Down