Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 31 additions & 0 deletions python/tvm/relay/frontend/onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -3444,6 +3444,35 @@ def body_fn(*loop_inputs):
return outputs


class LinearRegressor(OnnxOpConverter):
"""Operator converter for LinearRegressor."""

@classmethod
def _impl_v1(cls, inputs, attr, params):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

document for parameter/return/function brief

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

IMHO, given that all functions in this frontend do not have docstring, it should be fine for this PR to follow this convention for now.

data = inputs[0]
coefficients = attr.get("coefficients", 0)
data_shape = infer_shape(data)
targets = attr.get("targets", 1)
coefficients = _expr.const(list(coefficients), dtype="float32")
coefficients_shape = infer_shape(coefficients)

coefficients = _op.reshape(coefficients, (targets, coefficients_shape[0] // targets))
if coefficients_shape[0] // targets < data_shape[-1]:
data = _op.split(data, [coefficients_shape[0] // targets], -1)[0]

mm_out = _op.nn.dense(data, coefficients)

if "intercepts" in attr:
intercepts = attr.get("intercepts", 0)
intercepts = _expr.const(list(intercepts), dtype="float32")

if targets == 1:
return _op.nn.bias_add(mm_out, intercepts, axis=-1)
return get_relay_op("add")(mm_out, intercepts)

return mm_out


class NonMaxSuppression(OnnxOpConverter):
"""Operator converter for NonMaxSuppression."""

Expand Down Expand Up @@ -4770,6 +4799,8 @@ def _get_convert_map(opset):
"Adam": Adam.get_converter(opset),
"Momentum": Momentum.get_converter(opset),
"Scan": Scan.get_converter(opset),
# ML
"LinearRegressor": LinearRegressor.get_converter(opset),
}


Expand Down
44 changes: 44 additions & 0 deletions tests/python/frontend/onnx/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -6275,6 +6275,49 @@ def verify_scan(
verify_scan(input_shapes, output_shapes, 3, [-4, -1, -2], [1] * 3, [-3, -2], [1] * 2, 9)


@tvm.testing.parametrize_targets
def test_LinearRegressor(target, dev):
def verify_LinearRegressor(a_shape, c_shape, i_shape, targets=1, batch=1):
a_array = np.random.uniform(size=a_shape).astype("float32")
out_shape = (batch, targets)

coefficients = np.random.uniform(size=c_shape).astype("float32")
intercepts = np.random.uniform(size=i_shape).astype("float32")

mul_node = helper.make_node(
"LinearRegressor",
["a"],
["out"],
coefficients=coefficients,
intercepts=intercepts,
targets=targets,
domain="ai.onnx.ml",
)

graph = helper.make_graph(
[mul_node],
"LinearRegressor_test",
inputs=[
helper.make_tensor_value_info("a", TensorProto.FLOAT, list(a_shape)),
],
outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, out_shape)],
)
model = helper.make_model(
graph,
producer_name="LinearRegressor_test",
opset_imports=[
onnx.helper.make_opsetid("ai.onnx.ml", 1),
],
)
verify_with_ort_with_inputs(model, [a_array], target=target, dev=dev)

verify_LinearRegressor((1, 3), (3), (1))
verify_LinearRegressor((2, 10), (10), (1), batch=2)
verify_LinearRegressor((1, 3), (30), (10), targets=10)
verify_LinearRegressor((10, 3), (30), (10), targets=10, batch=10)
verify_LinearRegressor((1, 4), (3), (1))


if __name__ == "__main__":
test_flatten()
test_reshape()
Expand Down Expand Up @@ -6371,3 +6414,4 @@ def verify_scan(
test_random_uniform_like()
test_random_normal()
test_random_normal_like()
test_LinearRegressor()