Skip to content
Closed
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
49 changes: 49 additions & 0 deletions docs/ml-features.md
Original file line number Diff line number Diff line change
Expand Up @@ -1949,3 +1949,52 @@ output.select("features", "label").show()
{% endhighlight %}
</div>
</div>

## ChiSqSelector

`ChiSqSelector` stands for Chi-Squared feature selection. It operates on labeled data with
categorical features. ChiSqSelector orders features based on a
[Chi-Squared test of independence](https://en.wikipedia.org/wiki/Chi-squared_test)
from the class, and then filters (selects) the top features which the class label depends on the
most. This is akin to yielding the features with the most predictive power.

**Examples**

Assume that we have a DataFrame with the columns `id`, `features`, and `clicked`:
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Explain what "clicked" means just to be clear


~~~
id | features | clicked
---|-----------------------|---------
7 | [0.0, 0.0, 18.0, 1.0] | 1.0
8 | [0.0, 1.0, 12.0, 0.0] | 0.0
9 | [1.0, 0.0, 15.0, 0.1] | 0.0
~~~

If we use `ChiSqSelector` with a `numTopFeatures = 1`, then according to our label `clicked` the
last column of our `features` is the result:
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"last column of our features is the result" --> "last column in our features chosen as the most useful feature"


~~~
id | features | clicked | result
---|-----------------------|---------|-------
7 | [0.0, 0.0, 18.0, 1.0] | 1.0 | [1.0]
8 | [0.0, 1.0, 12.0, 0.0] | 0.0 | [0.0]
9 | [1.0, 0.0, 15.0, 0.1] | 0.0 | [0.1]
~~~

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [ChiSqSelector Scala docs](api/scala/index.html#org.apache.spark.ml.feature.ChiSqSelector)
for more details on the API.

{% include_example scala/org/apache/spark/examples/ml/ChiSqSelectorExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [ChiSqSelector Java docs](api/java/org/apache/spark/ml/feature/ChiSqSelector.html)
for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaChiSqSelectorExample.java %}
</div>
</div>
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.examples.ml;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.SQLContext;

// $example on$
import java.util.Arrays;

import org.apache.spark.ml.feature.ChiSqSelector;
import org.apache.spark.mllib.linalg.VectorUDT;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
// $example off$

public class JavaChiSqSelectorExample {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("JavaChiSqSelectorExample");
JavaSparkContext jsc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(jsc);

// $example on$
JavaRDD<Row> jrdd = jsc.parallelize(Arrays.asList(
RowFactory.create(7, Vectors.dense(0.0, 0.0, 18.0, 1.0), 1.0),
RowFactory.create(8, Vectors.dense(0.0, 1.0, 12.0, 0.0), 0.0),
RowFactory.create(9, Vectors.dense(1.0, 0.0, 15.0, 0.1), 0.0)
));
StructType schema = new StructType(new StructField[]{
new StructField("id", DataTypes.IntegerType, false, Metadata.empty()),
new StructField("features", new VectorUDT(), false, Metadata.empty()),
new StructField("clicked", DataTypes.DoubleType, false, Metadata.empty())
});

DataFrame df = sqlContext.createDataFrame(jrdd, schema);

ChiSqSelector selector = new ChiSqSelector()
.setNumTopFeatures(1)
.setFeaturesCol("features")
.setLabelCol("clicked")
.setOutputCol("result");

DataFrame result = selector.fit(df).transform(df);
result.show();
// $example off$
jsc.stop();
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

// scalastyle:off println
package org.apache.spark.examples.ml

// $example on$
import org.apache.spark.ml.feature.ChiSqSelector
import org.apache.spark.mllib.linalg.Vectors
// $example off$
import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext}

object ChiSqSelectorExample {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("ChiSqSelectorExample")
val sc = new SparkContext(conf)

val sqlContext = SQLContext.getOrCreate(sc)
import sqlContext.implicits._

// $example on$
val data = Seq(
(7, Vectors.dense(0.0, 0.0, 18.0, 1.0), 1.0),
(8, Vectors.dense(0.0, 1.0, 12.0, 0.0), 0.0),
(9, Vectors.dense(1.0, 0.0, 15.0, 0.1), 0.0)
)

val df = sc.parallelize(data).toDF("id", "features", "clicked")

val selector = new ChiSqSelector()
.setNumTopFeatures(1)
.setFeaturesCol("features")
.setLabelCol("clicked")
.setOutputCol("result")
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

rename to selectedFeatures


val result = selector.fit(df).transform(df)
result.show()
// $example off$
sc.stop()
}
}
// scalastyle:on println