Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
754 changes: 14 additions & 740 deletions docs/ml-ensembles.md

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
@@ -0,0 +1,102 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.examples.ml;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
// $example on$
import org.apache.spark.ml.Pipeline;
import org.apache.spark.ml.PipelineModel;
import org.apache.spark.ml.PipelineStage;
import org.apache.spark.ml.classification.GBTClassificationModel;
import org.apache.spark.ml.classification.GBTClassifier;
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator;
import org.apache.spark.ml.feature.*;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;
// $example off$

public class JavaGradientBoostedTreeClassifierExample {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("JavaGradientBoostedTreeClassifierExample");
JavaSparkContext jsc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(jsc);

// $example on$
// Load and parse the data file, converting it to a DataFrame.
DataFrame data = sqlContext.read().format("libsvm").load("data/mllib/sample_libsvm_data.txt");

// Index labels, adding metadata to the label column.
// Fit on whole dataset to include all labels in index.
StringIndexerModel labelIndexer = new StringIndexer()
.setInputCol("label")
.setOutputCol("indexedLabel")
.fit(data);
// Automatically identify categorical features, and index them.
// Set maxCategories so features with > 4 distinct values are treated as continuous.
VectorIndexerModel featureIndexer = new VectorIndexer()
.setInputCol("features")
.setOutputCol("indexedFeatures")
.setMaxCategories(4)
.fit(data);

// Split the data into training and test sets (30% held out for testing)
DataFrame[] splits = data.randomSplit(new double[] {0.7, 0.3});
DataFrame trainingData = splits[0];
DataFrame testData = splits[1];

// Train a GBT model.
GBTClassifier gbt = new GBTClassifier()
.setLabelCol("indexedLabel")
.setFeaturesCol("indexedFeatures")
.setMaxIter(10);

// Convert indexed labels back to original labels.
IndexToString labelConverter = new IndexToString()
.setInputCol("prediction")
.setOutputCol("predictedLabel")
.setLabels(labelIndexer.labels());

// Chain indexers and GBT in a Pipeline
Pipeline pipeline = new Pipeline()
.setStages(new PipelineStage[] {labelIndexer, featureIndexer, gbt, labelConverter});

// Train model. This also runs the indexers.
PipelineModel model = pipeline.fit(trainingData);

// Make predictions.
DataFrame predictions = model.transform(testData);

// Select example rows to display.
predictions.select("predictedLabel", "label", "features").show(5);

// Select (prediction, true label) and compute test error
MulticlassClassificationEvaluator evaluator = new MulticlassClassificationEvaluator()
.setLabelCol("indexedLabel")
.setPredictionCol("prediction")
.setMetricName("precision");
double accuracy = evaluator.evaluate(predictions);
System.out.println("Test Error = " + (1.0 - accuracy));

GBTClassificationModel gbtModel = (GBTClassificationModel)(model.stages()[2]);
System.out.println("Learned classification GBT model:\n" + gbtModel.toDebugString());
// $example off$

jsc.stop();
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.examples.ml;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
// $example on$
import org.apache.spark.ml.Pipeline;
import org.apache.spark.ml.PipelineModel;
import org.apache.spark.ml.PipelineStage;
import org.apache.spark.ml.evaluation.RegressionEvaluator;
import org.apache.spark.ml.feature.VectorIndexer;
import org.apache.spark.ml.feature.VectorIndexerModel;
import org.apache.spark.ml.regression.GBTRegressionModel;
import org.apache.spark.ml.regression.GBTRegressor;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;
// $example off$

public class JavaGradientBoostedTreeRegressorExample {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("JavaGradientBoostedTreeRegressorExample");
JavaSparkContext jsc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(jsc);

// $example on$
// Load and parse the data file, converting it to a DataFrame.
DataFrame data = sqlContext.read().format("libsvm").load("data/mllib/sample_libsvm_data.txt");

// Automatically identify categorical features, and index them.
// Set maxCategories so features with > 4 distinct values are treated as continuous.
VectorIndexerModel featureIndexer = new VectorIndexer()
.setInputCol("features")
.setOutputCol("indexedFeatures")
.setMaxCategories(4)
.fit(data);

// Split the data into training and test sets (30% held out for testing)
DataFrame[] splits = data.randomSplit(new double[] {0.7, 0.3});
DataFrame trainingData = splits[0];
DataFrame testData = splits[1];

// Train a GBT model.
GBTRegressor gbt = new GBTRegressor()
.setLabelCol("label")
.setFeaturesCol("indexedFeatures")
.setMaxIter(10);

// Chain indexer and GBT in a Pipeline
Pipeline pipeline = new Pipeline().setStages(new PipelineStage[] {featureIndexer, gbt});

// Train model. This also runs the indexer.
PipelineModel model = pipeline.fit(trainingData);

// Make predictions.
DataFrame predictions = model.transform(testData);

// Select example rows to display.
predictions.select("prediction", "label", "features").show(5);

// Select (prediction, true label) and compute test error
RegressionEvaluator evaluator = new RegressionEvaluator()
.setLabelCol("label")
.setPredictionCol("prediction")
.setMetricName("rmse");
double rmse = evaluator.evaluate(predictions);
System.out.println("Root Mean Squared Error (RMSE) on test data = " + rmse);

GBTRegressionModel gbtModel = (GBTRegressionModel)(model.stages()[1]);
System.out.println("Learned regression GBT model:\n" + gbtModel.toDebugString());
// $example off$

jsc.stop();
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
// $example on$
import org.apache.spark.ml.classification.LogisticRegression;
import org.apache.spark.ml.classification.OneVsRest;
import org.apache.spark.ml.classification.OneVsRestModel;
Expand All @@ -31,6 +32,7 @@
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.StructField;
// $example off$

/**
* An example runner for Multiclass to Binary Reduction with One Vs Rest.
Expand Down Expand Up @@ -61,6 +63,7 @@ public static void main(String[] args) {
JavaSparkContext jsc = new JavaSparkContext(conf);
SQLContext jsql = new SQLContext(jsc);

// $example on$
// configure the base classifier
LogisticRegression classifier = new LogisticRegression()
.setMaxIter(params.maxIter)
Expand Down Expand Up @@ -125,6 +128,7 @@ public static void main(String[] args) {
System.out.println(confusionMatrix);
System.out.println();
System.out.println(results);
// $example off$

jsc.stop();
}
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.examples.ml;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
// $example on$
import org.apache.spark.ml.Pipeline;
import org.apache.spark.ml.PipelineModel;
import org.apache.spark.ml.PipelineStage;
import org.apache.spark.ml.classification.RandomForestClassificationModel;
import org.apache.spark.ml.classification.RandomForestClassifier;
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator;
import org.apache.spark.ml.feature.*;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;
// $example off$

public class JavaRandomForestClassifierExample {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("JavaRandomForestClassifierExample");
JavaSparkContext jsc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(jsc);

// $example on$
// Load and parse the data file, converting it to a DataFrame.
DataFrame data = sqlContext.read().format("libsvm").load("data/mllib/sample_libsvm_data.txt");

// Index labels, adding metadata to the label column.
// Fit on whole dataset to include all labels in index.
StringIndexerModel labelIndexer = new StringIndexer()
.setInputCol("label")
.setOutputCol("indexedLabel")
.fit(data);
// Automatically identify categorical features, and index them.
// Set maxCategories so features with > 4 distinct values are treated as continuous.
VectorIndexerModel featureIndexer = new VectorIndexer()
.setInputCol("features")
.setOutputCol("indexedFeatures")
.setMaxCategories(4)
.fit(data);

// Split the data into training and test sets (30% held out for testing)
DataFrame[] splits = data.randomSplit(new double[] {0.7, 0.3});
DataFrame trainingData = splits[0];
DataFrame testData = splits[1];

// Train a RandomForest model.
RandomForestClassifier rf = new RandomForestClassifier()
.setLabelCol("indexedLabel")
.setFeaturesCol("indexedFeatures");

// Convert indexed labels back to original labels.
IndexToString labelConverter = new IndexToString()
.setInputCol("prediction")
.setOutputCol("predictedLabel")
.setLabels(labelIndexer.labels());

// Chain indexers and forest in a Pipeline
Pipeline pipeline = new Pipeline()
.setStages(new PipelineStage[] {labelIndexer, featureIndexer, rf, labelConverter});

// Train model. This also runs the indexers.
PipelineModel model = pipeline.fit(trainingData);

// Make predictions.
DataFrame predictions = model.transform(testData);

// Select example rows to display.
predictions.select("predictedLabel", "label", "features").show(5);

// Select (prediction, true label) and compute test error
MulticlassClassificationEvaluator evaluator = new MulticlassClassificationEvaluator()
.setLabelCol("indexedLabel")
.setPredictionCol("prediction")
.setMetricName("precision");
double accuracy = evaluator.evaluate(predictions);
System.out.println("Test Error = " + (1.0 - accuracy));

RandomForestClassificationModel rfModel = (RandomForestClassificationModel)(model.stages()[2]);
System.out.println("Learned classification forest model:\n" + rfModel.toDebugString());
// $example off$

jsc.stop();
}
}
Loading