Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions core/src/main/resources/error/error-classes.json
Original file line number Diff line number Diff line change
Expand Up @@ -269,6 +269,11 @@
"Input to the function <functionName> cannot contain elements of the \"MAP\" type. In Spark, same maps may have different hashcode, thus hash expressions are prohibited on \"MAP\" elements. To restore previous behavior set \"spark.sql.legacy.allowHashOnMapType\" to \"true\"."
]
},
"INVALID_ARG_VALUE" : {
"message" : [
"The <inputName> value must to be a <requireType> literal of <validValues>, but got <inputValue>."
]
},
"INVALID_JSON_MAP_KEY_TYPE" : {
"message" : [
"Input schema <schema> can only contain STRING as a key type for a MAP."
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2620,46 +2620,81 @@ case class ToBinary(
nullOnInvalidFormat: Boolean = false) extends RuntimeReplaceable
with ImplicitCastInputTypes {

override lazy val replacement: Expression = format.map { f =>
assert(f.foldable && (f.dataType == StringType || f.dataType == NullType))
@transient lazy val fmt: String = format.map { f =>
val value = f.eval()
if (value == null) {
Literal(null, BinaryType)
null
} else {
value.asInstanceOf[UTF8String].toString.toLowerCase(Locale.ROOT) match {
case "hex" => Unhex(expr, failOnError = true)
case "utf-8" | "utf8" => Encode(expr, Literal("UTF-8"))
case "base64" => UnBase64(expr, failOnError = true)
case _ if nullOnInvalidFormat => Literal(null, BinaryType)
case other => throw QueryCompilationErrors.invalidStringLiteralParameter(
"to_binary",
"format",
other,
Some(
"The value has to be a case-insensitive string literal of " +
"'hex', 'utf-8', 'utf8', or 'base64'."))
}
value.asInstanceOf[UTF8String].toString.toLowerCase(Locale.ROOT)
}
}.getOrElse("hex")

override lazy val replacement: Expression = if (fmt == null) {
Literal(null, BinaryType)
} else {
fmt match {
case "hex" => Unhex(expr, failOnError = true)
case "utf-8" | "utf8" => Encode(expr, Literal("UTF-8"))
case "base64" => UnBase64(expr, failOnError = true)
case _ => Literal(null, BinaryType)
}
}.getOrElse(Unhex(expr, failOnError = true))
}

def this(expr: Expression) = this(expr, None, false)

def this(expr: Expression, format: Expression) =
this(expr, Some({
// We perform this check in the constructor to make it eager and not go through type coercion.
if (format.foldable && (format.dataType == StringType || format.dataType == NullType)) {
format
} else {
throw QueryCompilationErrors.requireLiteralParameter("to_binary", "format", "string")
}
}), false)
this(expr, Some(format), false)

override def prettyName: String = "to_binary"

override def children: Seq[Expression] = expr +: format.toSeq

override def inputTypes: Seq[AbstractDataType] = children.map(_ => StringType)

override def checkInputDataTypes(): TypeCheckResult = {
def isValidFormat: Boolean = {
fmt == null || Set("hex", "utf-8", "utf8", "base64").contains(fmt)
}
format match {
case Some(f) =>
if (f.foldable && (f.dataType == StringType || f.dataType == NullType)) {
if (isValidFormat || nullOnInvalidFormat) {
super.checkInputDataTypes()
} else {
DataTypeMismatch(
errorSubClass = "INVALID_ARG_VALUE",
messageParameters = Map(
"inputName" -> "fmt",
"requireType" -> s"case-insensitive ${toSQLType(StringType)}",
"validValues" -> "'hex', 'utf-8', 'utf8', or 'base64'",
"inputValue" -> toSQLValue(fmt, StringType)
)
)
}
} else if (!f.foldable) {
DataTypeMismatch(
errorSubClass = "NON_FOLDABLE_INPUT",
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Could you write a test for the case, please. I just wonder how it could happen:

if (f.foldable && ...) {
...
  } else if (!f.foldable) {

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

For !f.foldable branch?

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yep. Just to be sure we handle the non-foldable case correctly.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

36e1bda add two new case

messageParameters = Map(
"inputName" -> "fmt",
"inputType" -> toSQLType(StringType),
"inputExpr" -> toSQLExpr(f)
)
)
} else {
DataTypeMismatch(
errorSubClass = "INVALID_ARG_VALUE",
messageParameters = Map(
"inputName" -> "fmt",
"requireType" -> s"case-insensitive ${toSQLType(StringType)}",
"validValues" -> "'hex', 'utf-8', 'utf8', or 'base64'",
"inputValue" -> toSQLValue(f.eval(), f.dataType)
)
)
}
case _ => super.checkInputDataTypes()
}
}

override protected def withNewChildrenInternal(
newChildren: IndexedSeq[Expression]): Expression = {
if (format.isDefined) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1256,6 +1256,21 @@ class StringExpressionsSuite extends SparkFunSuite with ExpressionEvalHelper {
)
}

test("ToBinary: fails analysis if fmt is not foldable") {
val wrongFmt = AttributeReference("invalidFormat", StringType)()
val toBinaryExpr = ToBinary(Literal("abc"), Some(wrongFmt))
assert(toBinaryExpr.checkInputDataTypes() ==
DataTypeMismatch(
errorSubClass = "NON_FOLDABLE_INPUT",
messageParameters = Map(
"inputName" -> "fmt",
"inputType" -> toSQLType(wrongFmt.dataType),
"inputExpr" -> toSQLExpr(wrongFmt)
)
)
)
}

test("ToNumber: negative tests (the input string does not match the format string)") {
Seq(
// The input contained more thousands separators than the format string.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -225,3 +225,7 @@ select to_binary(null, cast(null as string));
-- invalid format
select to_binary('abc', 1);
select to_binary('abc', 'invalidFormat');
CREATE TEMPORARY VIEW fmtTable(fmtField) AS SELECT * FROM VALUES ('invalidFormat');
SELECT to_binary('abc', fmtField) FROM fmtTable;
-- Clean up
DROP VIEW IF EXISTS fmtTable;
Original file line number Diff line number Diff line change
Expand Up @@ -1610,11 +1610,13 @@ struct<>
-- !query output
org.apache.spark.sql.AnalysisException
{
"errorClass" : "_LEGACY_ERROR_TEMP_1100",
"errorClass" : "DATATYPE_MISMATCH.INVALID_ARG_VALUE",
"messageParameters" : {
"argName" : "format",
"funcName" : "to_binary",
"requiredType" : "string"
"inputName" : "fmt",
"inputValue" : "'1'",
"requireType" : "case-insensitive \"STRING\"",
"sqlExpr" : "\"to_binary(abc, 1)\"",
"validValues" : "'hex', 'utf-8', 'utf8', or 'base64'"
},
"queryContext" : [ {
"objectType" : "",
Expand All @@ -1633,11 +1635,59 @@ struct<>
-- !query output
org.apache.spark.sql.AnalysisException
{
"errorClass" : "_LEGACY_ERROR_TEMP_1101",
"errorClass" : "DATATYPE_MISMATCH.INVALID_ARG_VALUE",
"messageParameters" : {
"argName" : "format",
"endingMsg" : " The value has to be a case-insensitive string literal of 'hex', 'utf-8', 'utf8', or 'base64'.",
"funcName" : "to_binary",
"invalidValue" : "invalidformat"
}
"inputName" : "fmt",
"inputValue" : "'invalidformat'",
"requireType" : "case-insensitive \"STRING\"",
"sqlExpr" : "\"to_binary(abc, invalidFormat)\"",
"validValues" : "'hex', 'utf-8', 'utf8', or 'base64'"
},
"queryContext" : [ {
"objectType" : "",
"objectName" : "",
"startIndex" : 8,
"stopIndex" : 40,
"fragment" : "to_binary('abc', 'invalidFormat')"
} ]
}


-- !query
CREATE TEMPORARY VIEW fmtTable(fmtField) AS SELECT * FROM VALUES ('invalidFormat')
-- !query schema
struct<>
-- !query output



-- !query
SELECT to_binary('abc', fmtField) FROM fmtTable
-- !query schema
struct<>
-- !query output
org.apache.spark.sql.AnalysisException
{
"errorClass" : "DATATYPE_MISMATCH.NON_FOLDABLE_INPUT",
"messageParameters" : {
"inputExpr" : "\"fmtField\"",
"inputName" : "fmt",
"inputType" : "\"STRING\"",
"sqlExpr" : "\"to_binary(abc, fmtField)\""
},
"queryContext" : [ {
"objectType" : "",
"objectName" : "",
"startIndex" : 8,
"stopIndex" : 33,
"fragment" : "to_binary('abc', fmtField)"
} ]
}


-- !query
DROP VIEW IF EXISTS fmtTable
-- !query schema
struct<>
-- !query output

Original file line number Diff line number Diff line change
Expand Up @@ -1542,11 +1542,13 @@ struct<>
-- !query output
org.apache.spark.sql.AnalysisException
{
"errorClass" : "_LEGACY_ERROR_TEMP_1100",
"errorClass" : "DATATYPE_MISMATCH.INVALID_ARG_VALUE",
"messageParameters" : {
"argName" : "format",
"funcName" : "to_binary",
"requiredType" : "string"
"inputName" : "fmt",
"inputValue" : "'1'",
"requireType" : "case-insensitive \"STRING\"",
"sqlExpr" : "\"to_binary(abc, 1)\"",
"validValues" : "'hex', 'utf-8', 'utf8', or 'base64'"
},
"queryContext" : [ {
"objectType" : "",
Expand All @@ -1565,11 +1567,59 @@ struct<>
-- !query output
org.apache.spark.sql.AnalysisException
{
"errorClass" : "_LEGACY_ERROR_TEMP_1101",
"errorClass" : "DATATYPE_MISMATCH.INVALID_ARG_VALUE",
"messageParameters" : {
"argName" : "format",
"endingMsg" : " The value has to be a case-insensitive string literal of 'hex', 'utf-8', 'utf8', or 'base64'.",
"funcName" : "to_binary",
"invalidValue" : "invalidformat"
}
"inputName" : "fmt",
"inputValue" : "'invalidformat'",
"requireType" : "case-insensitive \"STRING\"",
"sqlExpr" : "\"to_binary(abc, invalidFormat)\"",
"validValues" : "'hex', 'utf-8', 'utf8', or 'base64'"
},
"queryContext" : [ {
"objectType" : "",
"objectName" : "",
"startIndex" : 8,
"stopIndex" : 40,
"fragment" : "to_binary('abc', 'invalidFormat')"
} ]
}


-- !query
CREATE TEMPORARY VIEW fmtTable(fmtField) AS SELECT * FROM VALUES ('invalidFormat')
-- !query schema
struct<>
-- !query output



-- !query
SELECT to_binary('abc', fmtField) FROM fmtTable
-- !query schema
struct<>
-- !query output
org.apache.spark.sql.AnalysisException
{
"errorClass" : "DATATYPE_MISMATCH.NON_FOLDABLE_INPUT",
"messageParameters" : {
"inputExpr" : "\"fmtField\"",
"inputName" : "fmt",
"inputType" : "\"STRING\"",
"sqlExpr" : "\"to_binary(abc, fmtField)\""
},
"queryContext" : [ {
"objectType" : "",
"objectName" : "",
"startIndex" : 8,
"stopIndex" : 33,
"fragment" : "to_binary('abc', fmtField)"
} ]
}


-- !query
DROP VIEW IF EXISTS fmtTable
-- !query schema
struct<>
-- !query output