Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -140,7 +140,7 @@ object ParquetReadSupport extends Logging {
"Spark read schema expects field Ids, " +
"but Parquet file schema doesn't contain any field Ids.\n" +
"Please remove the field ids from Spark schema or ignore missing ids by " +
"setting `spark.sql.parquet.fieldId.ignoreMissing = true`\n" +
s"setting `${SQLConf.IGNORE_MISSING_PARQUET_FIELD_ID.key} = true`\n" +
s"""
|Spark read schema:
|${catalystRequestedSchema.prettyJson}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ import org.apache.spark.SparkException
import org.apache.spark.sql.{QueryTest, Row}
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.test.SharedSparkSession
import org.apache.spark.sql.types.{IntegerType, Metadata, MetadataBuilder, StringType, StructType}
import org.apache.spark.sql.types.{ArrayType, IntegerType, MapType, Metadata, MetadataBuilder, StringType, StructType}

class ParquetFieldIdIOSuite extends QueryTest with ParquetTest with SharedSparkSession {

Expand Down Expand Up @@ -107,6 +107,35 @@ class ParquetFieldIdIOSuite extends QueryTest with ParquetTest with SharedSparkS
}
}

test("SPARK-38094: absence of field ids: reading nested schema") {
withTempDir { dir =>
// now with nested schema/complex type
val readSchema =
new StructType()
.add("a", IntegerType, true, withId(1))
.add("b", ArrayType(StringType), true, withId(2))
.add("c", new StructType().add("c1", IntegerType, true, withId(6)), true, withId(3))
.add("d", MapType(StringType, StringType), true, withId(4))
.add("e", IntegerType, true, withId(5))

val writeSchema =
new StructType()
.add("a", IntegerType, true, withId(5))
.add("randomName", StringType, true)

val writeData = Seq(Row(100, "text"), Row(200, "more"))

spark.createDataFrame(writeData.asJava, writeSchema)
.write.mode("overwrite").parquet(dir.getCanonicalPath)

withAllParquetReaders {
checkAnswer(spark.read.schema(readSchema).parquet(dir.getCanonicalPath),
// a, b, c, d all couldn't be found
Row(null, null, null, null, 100) :: Row(null, null, null, null, 200) :: Nil)
}
}
}

test("multiple id matches") {
withTempDir { dir =>
val readSchema =
Expand Down