Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,334 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.sql.execution.streaming.sources

import java.nio.file.Files
import java.util.Optional
import java.util.concurrent.TimeUnit

import scala.collection.JavaConverters._
import scala.collection.mutable.ArrayBuffer

import org.apache.spark.sql.{AnalysisException, Row, SparkSession}
import org.apache.spark.sql.catalyst.errors.TreeNodeException
import org.apache.spark.sql.execution.datasources.DataSource
import org.apache.spark.sql.execution.streaming._
import org.apache.spark.sql.execution.streaming.continuous._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.sources.v2.{ContinuousReadSupport, DataSourceOptions, MicroBatchReadSupport}
import org.apache.spark.sql.sources.v2.reader.streaming.Offset
import org.apache.spark.sql.streaming.StreamTest
import org.apache.spark.util.ManualClock

class RateSourceSuite extends StreamTest {

import testImplicits._

case class AdvanceRateManualClock(seconds: Long) extends AddData {
override def addData(query: Option[StreamExecution]): (BaseStreamingSource, Offset) = {
assert(query.nonEmpty)
val rateSource = query.get.logicalPlan.collect {
case StreamingExecutionRelation(source: RateStreamMicroBatchReader, _) => source
}.head

rateSource.clock.asInstanceOf[ManualClock].advance(TimeUnit.SECONDS.toMillis(seconds))
val offset = LongOffset(TimeUnit.MILLISECONDS.toSeconds(
rateSource.clock.getTimeMillis() - rateSource.creationTimeMs))
(rateSource, offset)
}
}

test("microbatch in registry") {
DataSource.lookupDataSource("rate", spark.sqlContext.conf).newInstance() match {
case ds: MicroBatchReadSupport =>
val reader = ds.createMicroBatchReader(Optional.empty(), "dummy", DataSourceOptions.empty())
assert(reader.isInstanceOf[RateStreamMicroBatchReader])
case _ =>
throw new IllegalStateException("Could not find read support for rate")
}
}

test("compatible with old path in registry") {
DataSource.lookupDataSource("org.apache.spark.sql.execution.streaming.RateSourceProvider",
spark.sqlContext.conf).newInstance() match {
case ds: MicroBatchReadSupport =>
assert(ds.isInstanceOf[RateStreamProvider])
case _ =>
throw new IllegalStateException("Could not find read support for rate")
}
}

test("microbatch - basic") {
val input = spark.readStream
.format("rate")
.option("rowsPerSecond", "10")
.option("useManualClock", "true")
.load()
testStream(input)(
AdvanceRateManualClock(seconds = 1),
CheckLastBatch((0 until 10).map(v => new java.sql.Timestamp(v * 100L) -> v): _*),
StopStream,
StartStream(),
// Advance 2 seconds because creating a new RateSource will also create a new ManualClock
AdvanceRateManualClock(seconds = 2),
CheckLastBatch((10 until 20).map(v => new java.sql.Timestamp(v * 100L) -> v): _*)
)
}

test("microbatch - uniform distribution of event timestamps") {
val input = spark.readStream
.format("rate")
.option("rowsPerSecond", "1500")
.option("useManualClock", "true")
.load()
.as[(java.sql.Timestamp, Long)]
.map(v => (v._1.getTime, v._2))
val expectedAnswer = (0 until 1500).map { v =>
(math.round(v * (1000.0 / 1500)), v)
}
testStream(input)(
AdvanceRateManualClock(seconds = 1),
CheckLastBatch(expectedAnswer: _*)
)
}

test("microbatch - set offset") {
val temp = Files.createTempDirectory("dummy").toString
val reader = new RateStreamMicroBatchReader(DataSourceOptions.empty(), temp)
val startOffset = LongOffset(0L)
val endOffset = LongOffset(1L)
reader.setOffsetRange(Optional.of(startOffset), Optional.of(endOffset))
assert(reader.getStartOffset() == startOffset)
assert(reader.getEndOffset() == endOffset)
}

test("microbatch - infer offsets") {
val tempFolder = Files.createTempDirectory("dummy").toString
val reader = new RateStreamMicroBatchReader(
new DataSourceOptions(
Map("numPartitions" -> "1", "rowsPerSecond" -> "100", "useManualClock" -> "true").asJava),
tempFolder)
reader.clock.asInstanceOf[ManualClock].advance(100000)
reader.setOffsetRange(Optional.empty(), Optional.empty())
reader.getStartOffset() match {
case r: LongOffset => assert(r.offset === 0L)
case _ => throw new IllegalStateException("unexpected offset type")
}
reader.getEndOffset() match {
case r: LongOffset => assert(r.offset >= 100)
case _ => throw new IllegalStateException("unexpected offset type")
}
}

test("microbatch - predetermined batch size") {
val temp = Files.createTempDirectory("dummy").toString
val reader = new RateStreamMicroBatchReader(
new DataSourceOptions(Map("numPartitions" -> "1", "rowsPerSecond" -> "20").asJava), temp)
val startOffset = LongOffset(0L)
val endOffset = LongOffset(1L)
reader.setOffsetRange(Optional.of(startOffset), Optional.of(endOffset))
val tasks = reader.createDataReaderFactories()
assert(tasks.size == 1)
val dataReader = tasks.get(0).createDataReader()
val data = ArrayBuffer[Row]()
while (dataReader.next()) {
data.append(dataReader.get())
}
assert(data.size === 20)
}

test("microbatch - data read") {
val temp = Files.createTempDirectory("dummy").toString
val reader = new RateStreamMicroBatchReader(
new DataSourceOptions(Map("numPartitions" -> "11", "rowsPerSecond" -> "33").asJava), temp)
val startOffset = LongOffset(0L)
val endOffset = LongOffset(1L)
reader.setOffsetRange(Optional.of(startOffset), Optional.of(endOffset))
val tasks = reader.createDataReaderFactories()
assert(tasks.size == 11)

val readData = tasks.asScala
.map(_.createDataReader())
.flatMap { reader =>
val buf = scala.collection.mutable.ListBuffer[Row]()
while (reader.next()) buf.append(reader.get())
buf
}

assert(readData.map(_.getLong(1)).sorted == Range(0, 33))
}

test("valueAtSecond") {
import RateStreamProvider._

assert(valueAtSecond(seconds = 0, rowsPerSecond = 5, rampUpTimeSeconds = 0) === 0)
assert(valueAtSecond(seconds = 1, rowsPerSecond = 5, rampUpTimeSeconds = 0) === 5)

assert(valueAtSecond(seconds = 0, rowsPerSecond = 5, rampUpTimeSeconds = 2) === 0)
assert(valueAtSecond(seconds = 1, rowsPerSecond = 5, rampUpTimeSeconds = 2) === 1)
assert(valueAtSecond(seconds = 2, rowsPerSecond = 5, rampUpTimeSeconds = 2) === 3)
assert(valueAtSecond(seconds = 3, rowsPerSecond = 5, rampUpTimeSeconds = 2) === 8)

assert(valueAtSecond(seconds = 0, rowsPerSecond = 10, rampUpTimeSeconds = 4) === 0)
assert(valueAtSecond(seconds = 1, rowsPerSecond = 10, rampUpTimeSeconds = 4) === 2)
assert(valueAtSecond(seconds = 2, rowsPerSecond = 10, rampUpTimeSeconds = 4) === 6)
assert(valueAtSecond(seconds = 3, rowsPerSecond = 10, rampUpTimeSeconds = 4) === 12)
assert(valueAtSecond(seconds = 4, rowsPerSecond = 10, rampUpTimeSeconds = 4) === 20)
assert(valueAtSecond(seconds = 5, rowsPerSecond = 10, rampUpTimeSeconds = 4) === 30)
}

test("rampUpTime") {
val input = spark.readStream
.format("rate")
.option("rowsPerSecond", "10")
.option("rampUpTime", "4s")
.option("useManualClock", "true")
.load()
.as[(java.sql.Timestamp, Long)]
.map(v => (v._1.getTime, v._2))
testStream(input)(
AdvanceRateManualClock(seconds = 1),
CheckLastBatch((0 until 2).map(v => v * 500 -> v): _*), // speed = 2
AdvanceRateManualClock(seconds = 1),
CheckLastBatch((2 until 6).map(v => 1000 + (v - 2) * 250 -> v): _*), // speed = 4
AdvanceRateManualClock(seconds = 1),
CheckLastBatch({
Seq(2000 -> 6, 2167 -> 7, 2333 -> 8, 2500 -> 9, 2667 -> 10, 2833 -> 11)
}: _*), // speed = 6
AdvanceRateManualClock(seconds = 1),
CheckLastBatch((12 until 20).map(v => 3000 + (v - 12) * 125 -> v): _*), // speed = 8
AdvanceRateManualClock(seconds = 1),
// Now we should reach full speed
CheckLastBatch((20 until 30).map(v => 4000 + (v - 20) * 100 -> v): _*), // speed = 10
AdvanceRateManualClock(seconds = 1),
CheckLastBatch((30 until 40).map(v => 5000 + (v - 30) * 100 -> v): _*), // speed = 10
AdvanceRateManualClock(seconds = 1),
CheckLastBatch((40 until 50).map(v => 6000 + (v - 40) * 100 -> v): _*) // speed = 10
)
}

test("numPartitions") {
val input = spark.readStream
.format("rate")
.option("rowsPerSecond", "10")
.option("numPartitions", "6")
.option("useManualClock", "true")
.load()
.select(spark_partition_id())
.distinct()
testStream(input)(
AdvanceRateManualClock(1),
CheckLastBatch((0 until 6): _*)
)
}

testQuietly("overflow") {
val input = spark.readStream
.format("rate")
.option("rowsPerSecond", Long.MaxValue.toString)
.option("useManualClock", "true")
.load()
.select(spark_partition_id())
.distinct()
testStream(input)(
AdvanceRateManualClock(2),
ExpectFailure[ArithmeticException](t => {
Seq("overflow", "rowsPerSecond").foreach { msg =>
assert(t.getMessage.contains(msg))
}
})
)
}

testQuietly("illegal option values") {
def testIllegalOptionValue(
option: String,
value: String,
expectedMessages: Seq[String]): Unit = {
val e = intercept[IllegalArgumentException] {
spark.readStream
.format("rate")
.option(option, value)
.load()
.writeStream
.format("console")
.start()
.awaitTermination()
}
for (msg <- expectedMessages) {
assert(e.getMessage.contains(msg))
}
}

testIllegalOptionValue("rowsPerSecond", "-1", Seq("-1", "rowsPerSecond", "positive"))
testIllegalOptionValue("numPartitions", "-1", Seq("-1", "numPartitions", "positive"))
}

test("user-specified schema given") {
val exception = intercept[AnalysisException] {
spark.readStream
.format("rate")
.schema(spark.range(1).schema)
.load()
}
assert(exception.getMessage.contains(
"rate source does not support a user-specified schema"))
}

test("continuous in registry") {
DataSource.lookupDataSource("rate", spark.sqlContext.conf).newInstance() match {
case ds: ContinuousReadSupport =>
val reader = ds.createContinuousReader(Optional.empty(), "", DataSourceOptions.empty())
assert(reader.isInstanceOf[RateStreamContinuousReader])
case _ =>
throw new IllegalStateException("Could not find read support for continuous rate")
}
}

test("continuous data") {
val reader = new RateStreamContinuousReader(
new DataSourceOptions(Map("numPartitions" -> "2", "rowsPerSecond" -> "20").asJava))
reader.setStartOffset(Optional.empty())
val tasks = reader.createDataReaderFactories()
assert(tasks.size == 2)

val data = scala.collection.mutable.ListBuffer[Row]()
tasks.asScala.foreach {
case t: RateStreamContinuousDataReaderFactory =>
val startTimeMs = reader.getStartOffset()
.asInstanceOf[RateStreamOffset]
.partitionToValueAndRunTimeMs(t.partitionIndex)
.runTimeMs
val r = t.createDataReader().asInstanceOf[RateStreamContinuousDataReader]
for (rowIndex <- 0 to 9) {
r.next()
data.append(r.get())
assert(r.getOffset() ==
RateStreamPartitionOffset(
t.partitionIndex,
t.partitionIndex + rowIndex * 2,
startTimeMs + (rowIndex + 1) * 100))
}
assert(System.currentTimeMillis() >= startTimeMs + 1000)

case _ => throw new IllegalStateException("Unexpected task type")
}

assert(data.map(_.getLong(1)).toSeq.sorted == Range(0, 20))
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -61,6 +61,7 @@ private[sql] trait SQLTestUtils extends SparkFunSuite with SQLTestUtilsBase with

protected override def beforeAll(): Unit = {
super.beforeAll()
SparkSession.setActiveSession(spark)
if (loadTestDataBeforeTests) {
loadTestData()
}
Expand Down