Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Add test case for oneDNN RNN #19465

Merged
merged 1 commit into from
Nov 6, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 28 additions & 0 deletions tests/python/mkl/test_mkldnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@
from mxnet.test_utils import *
curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__)))
sys.path.append(os.path.join(curr_path, '../unittest/'))
import itertools

@pytest.mark.seed(1234)
def test_mkldnn_ndarray_slice():
Expand Down Expand Up @@ -649,3 +650,30 @@ def check_elemwise_add_training(stype):
for stype in stypes:
check_elemwise_add_training(stype)

def test_rnn():
SEQ_LENGTH = [2**10, 2**5]
STATE_SIZE = [1, 2]
BATCH_SIZE = [4]
INPUT_SIZE = [4]
def batch_check(seq_length, state_size, batch_size, input_size):
modes_params = [('rnn_relu', mx.np.random.normal(0, 1, ((input_size + state_size + 2)*state_size),)),
('rnn_tanh', mx.np.random.normal(0, 1, ((input_size + state_size + 2)*state_size),)),
('gru', mx.np.random.normal(0, 1, ((input_size + state_size + 2)*state_size*3),))
]
for m, p in modes_params:
data = mx.np.random.normal(0, 1, (seq_length, batch_size, input_size))
state = mx.np.random.normal(0, 1, (1, batch_size, state_size))
data.attach_grad()
state.attach_grad()

with mx.autograd.record():
y = mx.npx.rnn(data=data, parameters=p, mode=m, \
state=state, state_size=state_size, num_layers=1)
assert y.shape == (seq_length, batch_size, state_size)
assert type(y[0]).__name__ == 'ndarray'
y.backward()
assert state.shape == (1, batch_size, state_size)
assert type(state[0]).__name__ == 'ndarray'

for sl, ss, bs, in_s in itertools.product(SEQ_LENGTH, STATE_SIZE, BATCH_SIZE, INPUT_SIZE):
batch_check(sl, ss, bs, in_s)