Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Aggregated zero grad #16446

Merged
merged 11 commits into from
Oct 15, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 18 additions & 3 deletions python/mxnet/gluon/parameter.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,9 +24,10 @@
'ParameterDict', 'tensor_types']


from collections import OrderedDict
from collections import OrderedDict, defaultdict
import warnings
import numpy as np
import mxnet as mx

from ..base import mx_real_t, MXNetError
from .. import symbol, ndarray, initializer, context
Expand Down Expand Up @@ -887,8 +888,22 @@ def initialize(self, init=initializer.Uniform(), ctx=None, verbose=False,

def zero_grad(self):
"""Sets all Parameters' gradient buffer to 0."""
for i in self.values():
i.zero_grad()
# collect gradient arrays for each ctx
arrays = defaultdict(list)
for p in self.values():
if p.grad_req == 'null' or p._grad is None:
continue
for g in p.list_grad():
if g.stype == 'row_sparse':
mx.ndarray.zeros_like(g, out=g)
else:
arrays[g.context].append(g)

if len(arrays) == 0:
return

for arr in arrays.values():
mx.nd.reset_arrays(*arr, num_arrays=len(arr))

def reset_ctx(self, ctx):
"""Re-assign all Parameters to other contexts.
Expand Down
92 changes: 92 additions & 0 deletions src/operator/contrib/reset_arrays-inl.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2019 by Contributors
* \file reset_arrays-inl.h
* \brief setting all array element values to zeros
* \author Moises Hernandez-Fernandez, Andrei Ivanov
*/

#ifndef MXNET_OPERATOR_CONTRIB_RESET_ARRAYS_INL_H_
#define MXNET_OPERATOR_CONTRIB_RESET_ARRAYS_INL_H_

#include <vector>
#include "../tensor/init_op.h"

namespace mxnet {
namespace op {

struct ResetArraysParam : public dmlc::Parameter<ResetArraysParam> {
int num_arrays;
DMLC_DECLARE_PARAMETER(ResetArraysParam) {
DMLC_DECLARE_FIELD(num_arrays)
.describe("number of input arrays.");
}
};

inline bool ResetArraysShape(const NodeAttrs& attrs,
std::vector<mxnet::TShape>* in_shape,
std::vector<mxnet::TShape>* out_shape) {
const auto& param = dmlc::get<ResetArraysParam>(attrs.parsed);
CHECK_EQ(in_shape->size(), param.num_arrays);
for (auto s : *in_shape) {
if (s.ndim() == 0)
return false;
}

return true;
}

inline bool ResetArraysType(const NodeAttrs& attrs,
std::vector<int>* in_type,
std::vector<int>* out_type) {
const auto& param = dmlc::get<ResetArraysParam>(attrs.parsed);
CHECK_EQ(in_type->size(), param.num_arrays);
for (size_t i = 0; i < in_type->size(); ++i) {
if ((*in_type)[i] == -1)
return false;
}

return true;
}

template<typename xpu>
void ResetMemory(void *pntr, size_t len, mshadow::Stream<xpu> *s);

template<typename xpu>
void ResetArrays(const nnvm::NodeAttrs& attrs,
const OpContext &ctx,
const std::vector<TBlob> &inputs,
const std::vector<OpReqType> &req,
const std::vector<TBlob> &outputs) {
auto s = ctx.get_stream<xpu>();
const auto& param = nnvm::get<ResetArraysParam>(attrs.parsed);
for (int i = 0; i < param.num_arrays; i++) { // array index in inputs
const size_t size = inputs[i].shape_.Size();
MSHADOW_REAL_TYPE_SWITCH(inputs[i].type_flag_, DType,
ResetMemory(inputs[i].FlatTo2D<xpu, DType>(s).dptr_, size * sizeof(DType), s);
)
}
}

} // namespace op
} // namespace mxnet

#endif // MXNET_OPERATOR_CONTRIB_RESET_ARRAYS_INL_H_
74 changes: 74 additions & 0 deletions src/operator/contrib/reset_arrays.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2019 by Contributors
* \file reset_arrays.cc
* \brief setting all array element values to zeros
* \author Moises Hernandez-Fernandez, Andrei Ivanov
*/

#include "./reset_arrays-inl.h"

namespace mxnet {
namespace op {

DMLC_REGISTER_PARAMETER(ResetArraysParam);

NNVM_REGISTER_OP(reset_arrays)
.describe(R"code(Set to zero multiple arrays
)code" ADD_FILELINE)
.set_num_inputs([](const nnvm::NodeAttrs& attrs) {
return static_cast<uint32_t>(dmlc::get<ResetArraysParam>(attrs.parsed).num_arrays);
})
.set_attr<nnvm::FMutateInputs>("FMutateInputs",
[](const nnvm::NodeAttrs& attrs) {
const uint32_t num_args = dmlc::get<ResetArraysParam>(attrs.parsed).num_arrays;
std::vector<uint32_t> ret;
for (uint32_t i = 0; i < num_args; ++i) {
ret.push_back(i);
}
return ret;
})
.set_num_outputs(0)
.set_attr_parser(ParamParser<ResetArraysParam>)
.set_attr<mxnet::FInferShape>("FInferShape", ResetArraysShape)
.set_attr<nnvm::FInferType>("FInferType", ResetArraysType)
.set_attr<nnvm::FListInputNames>("FListInputNames",
[](const NodeAttrs& attrs) {
const uint32_t num_args = dmlc::get<ResetArraysParam>(attrs.parsed).num_arrays;
std::vector<std::string> ret;
for (uint32_t i = 0; i < num_args; ++i) {
ret.push_back(std::string("array_") + std::to_string(i));
}
return ret;
})
.add_argument("data", "NDArray-or-Symbol[]", "Arrays")
.add_arguments(ResetArraysParam::__FIELDS__());

NNVM_REGISTER_OP(reset_arrays)
.set_attr<FCompute>("FCompute<cpu>", ResetArrays<cpu>);

template<>
void ResetMemory<cpu>(void *pntr, size_t len, mshadow::Stream<cpu> *s) {
memset(pntr, 0, len);
}

} // namespace op
} // namespace mxnet
40 changes: 40 additions & 0 deletions src/operator/contrib/reset_arrays.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2019 by Contributors
* \file reset_arrays.cu
* \brief setting all array element values to zeros
* \author Moises Hernandez-Fernandez, Andrei Ivanov
*/
#include "./reset_arrays-inl.h"

namespace mxnet {
namespace op {

template<>
void ResetMemory<gpu>(void *pntr, size_t len, mshadow::Stream<gpu> *s) {
CUDA_CALL(cudaMemsetAsync(pntr, 0, len, mshadow::Stream<gpu>::GetStream(s)));
}

NNVM_REGISTER_OP(reset_arrays)
.set_attr<FCompute>("FCompute<gpu>", ResetArrays<gpu>);

} // namespace op
} // namespace mxnet
66 changes: 57 additions & 9 deletions tests/python/unittest/test_gluon.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,7 @@
import warnings
import json
import unittest
import random

@with_seed()
def test_parameter():
Expand Down Expand Up @@ -1504,15 +1505,62 @@ def test_hybrid_multi_context():

@with_seed()
def test_zero_grad():
data = mx.nd.random.uniform(shape=(3,3))
net = nn.Embedding(3, 4, sparse_grad=True, prefix='test_zero_grad_')
net.initialize()
with mx.autograd.record():
l = net(data)
l.backward()
net.collect_params().zero_grad()
grad = net.collect_params()['test_zero_grad_weight'].grad()
assert_almost_equal(grad.asnumpy(), grad.asnumpy() * 0)
def _test_grad_reset(ctx, dtype='float32', sparse=False, embeddingType=None):
data = mx.nd.random.uniform(shape=(3,3), dtype=dtype, ctx=ctx)
if embeddingType is None:
embeddingType = dtype
net = nn.Embedding(3, 4, sparse_grad=sparse, prefix='test_zero_grad_', dtype=embeddingType)
net.initialize(ctx=ctx)
with mx.autograd.record():
l = net(data)
l.backward()
net.collect_params().zero_grad()
grad = net.collect_params()['test_zero_grad_weight'].grad()
assert_almost_equal(grad.asnumpy(), grad.asnumpy() * 0)

def _test_multi_reset(nArrays, dtype, ctx):
# Construct the list of non-zeros arrays with random shapes
arr = []
for _ in range(nArrays):
arrType = random.choice(dtype) if isinstance(dtype, list) else dtype
shape = ()
for _ in range(np.random.randint(1, 5)):
shape = shape + (np.random.randint(1, 10),)
arr.append(mx.nd.random.uniform(shape=shape, dtype=arrType, ctx=ctx))

# Reset all arrays
mx.nd.reset_arrays(*arr, num_arrays=len(arr))

# Check results
for i in range(nArrays):
grad = arr[i].asnumpy()
assert_almost_equal(grad, grad * 0)


# Setting context for current test
ctx = mx.context.current_context()

# Launching _test_multi_reset 10 times with different types & randomly chosen nArrays
testedTypes = ['float16', 'float32', 'float64']
for _ in range(10):
for type in [testedTypes] + testedTypes:
_test_multi_reset(np.random.randint(1, 50), type, ctx)

# Saving value of environment variable, if it was defined
envVarKey = 'MXNET_STORAGE_FALLBACK_LOG_VERBOSE'
envVarValue = os.environ[envVarKey] if envVarKey in os.environ else None
# Changing value of environment variable
os.environ[envVarKey] = '0'
for type in ['float16', 'float32', 'float64']:
for embType in ['float32', 'float64']:
for sparse in [True, False]:
_test_grad_reset(ctx, dtype=type, sparse=sparse, embeddingType=embType)

# Remove or restore the value of environment variable
if envVarValue is None:
del os.environ[envVarKey]
else:
os.environ[envVarKey] = envVarValue

def check_hybrid_static_memory(**kwargs):
x = mx.nd.random.uniform(shape=(2, 3, 32, 32))
Expand Down