Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[Numpy] Random.choice implemented #16089

Merged
merged 10 commits into from
Sep 9, 2019
Merged
Show file tree
Hide file tree
Changes from 8 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
80 changes: 79 additions & 1 deletion python/mxnet/ndarray/numpy/random.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@
from ...base import numeric_types


__all__ = ['randint', 'uniform', 'normal']
__all__ = ['randint', 'uniform', 'normal', "choice"]


def randint(low, high=None, size=None, dtype=None, **kwargs):
Expand Down Expand Up @@ -243,3 +243,81 @@ def multinomial(n, pvals, size=None):
if any(isinstance(i, list) for i in pvals):
raise ValueError('object too deep for desired array')
return _npi.multinomial(n=n, pvals=pvals, size=size)


def choice(a, size=None, replace=True, p=None, ctx=None, out=None):
"""Generates a random sample from a given 1-D array

Parameters
-----------
a : 1-D array-like or int
If an ndarray, a random sample is generated from its elements.
If an int, the random sample is generated as if a were np.arange(a)
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
replace : boolean, optional
Whether the sample is with or without replacement
p : 1-D array-like, optional
The probabilities associated with each entry in a.
If not given the sample assumes a uniform distribution over all
entries in a.
ctx : Context, optional
Device context of output. Default is current context.
out : ``ndarray``, optional
Store output to an existing ``ndarray``.

Returns
--------
samples : ndarray
The generated random samples

Examples
---------
Generate a uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3)
array([0, 3, 4])
>>> #This is equivalent to np.random.randint(0,5,3)

Generate a non-uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
array([3, 3, 0])

Generate a uniform random sample from np.arange(5) of size 3 without
replacement:

>>> np.random.choice(5, 3, replace=False)
array([3,1,0])
>>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

Generate a non-uniform random sample from np.arange(5) of size
3 without replacement:

>>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
array([2, 3, 0])
"""
from ...numpy import ndarray as np_ndarray
if ctx is None:
ctx = current_context()
if out is not None:
size = out.shape
if size == ():
size = None

if isinstance(a, np_ndarray):
if p is None:
indices = _npi.choice(a, a=None, size=size,
replace=replace, ctx=ctx, weighted=False)
return _npi.take(a, indices)
else:
indices = _npi.choice(a, p, a=None, size=size,
replace=replace, ctx=ctx, weighted=True)
return _npi.take(a, indices)
else:
if p is None:
return _npi.choice(a=a, size=size, replace=replace, ctx=ctx, weighted=False)
else:
return _npi.choice(p, a=a, size=size, replace=replace, ctx=ctx, weighted=True)
59 changes: 58 additions & 1 deletion python/mxnet/numpy/random.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@
from ..ndarray import numpy as _mx_nd_np


__all__ = ["randint", "uniform", "normal"]
__all__ = ["randint", "uniform", "normal", "choice"]


def randint(low, high=None, size=None, dtype=None, **kwargs):
Expand Down Expand Up @@ -180,3 +180,60 @@ def multinomial(n, pvals, size=None, **kwargs):
array([32, 68])
"""
return _mx_nd_np.random.multinomial(n, pvals, size, **kwargs)


def choice(a, size=None, replace=True, p=None, ctx=None, out=None):
"""Generates a random sample from a given 1-D array

Parameters
-----------
a : 1-D array-like or int
If an ndarray, a random sample is generated from its elements.
If an int, the random sample is generated as if a were np.arange(a)
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
replace : boolean, optional
Whether the sample is with or without replacement
p : 1-D array-like, optional
The probabilities associated with each entry in a.
If not given the sample assumes a uniform distribution over all
entries in a.
ctx : Context, optional
Device context of output. Default is current context.
out : ``ndarray``, optional
xidulu marked this conversation as resolved.
Show resolved Hide resolved
Store output to an existing ``ndarray``.

Returns
--------
samples : ndarray
The generated random samples

Examples
---------
Generate a uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3)
array([0, 3, 4])
>>> #This is equivalent to np.random.randint(0,5,3)

Generate a non-uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
array([3, 3, 0])

Generate a uniform random sample from np.arange(5) of size 3 without
replacement:

>>> np.random.choice(5, 3, replace=False)
array([3,1,0])
>>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

Generate a non-uniform random sample from np.arange(5) of size
3 without replacement:

>>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
array([2, 3, 0])
"""
return _mx_nd_np.random.choice(a, size, replace, p, ctx, out)
78 changes: 78 additions & 0 deletions python/mxnet/symbol/numpy/random.py
Original file line number Diff line number Diff line change
Expand Up @@ -190,3 +190,81 @@ def normal(loc=0.0, scale=1.0, size=None, **kwargs):
raise NotImplementedError('np.random.normal only supports loc and scale of '
'numeric types for now')
return _npi.random_normal(loc, scale, shape=size, dtype=dtype, ctx=ctx, out=out, **kwargs)


def choice(a, size=None, replace=True, p=None, ctx=None, out=None):
"""Generates a random sample from a given 1-D array

Parameters
-----------
a : 1-D array-like or int
If an ndarray, a random sample is generated from its elements.
If an int, the random sample is generated as if a were np.arange(a)
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
replace : boolean, optional
Whether the sample is with or without replacement
p : 1-D array-like, optional
The probabilities associated with each entry in a.
If not given the sample assumes a uniform distribution over all
entries in a.
ctx : Context, optional
Device context of output. Default is current context.
out : ``ndarray``, optional
Store output to an existing ``ndarray``.

Returns
--------
samples : _Symbol
The generated random samples

Examples
---------
Generate a uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3)
array([0, 3, 4])
>>> #This is equivalent to np.random.randint(0,5,3)

Generate a non-uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
array([3, 3, 0])

Generate a uniform random sample from np.arange(5) of size 3 without
replacement:

>>> np.random.choice(5, 3, replace=False)
array([3,1,0])
>>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

Generate a non-uniform random sample from np.arange(5) of size
3 without replacement:

>>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
array([2, 3, 0])
"""
from ._symbol import _Symbol as np_symbol
if ctx is None:
ctx = current_context()
if out is not None:
size = out.shape
if size == ():
size = None

if isinstance(a, np_symbol):
if p is None:
indices = _npi.choice(a, a=None, size=size,
replace=replace, ctx=ctx, weighted=False)
return _npi.take(a, indices)
else:
indices = _npi.choice(a, p, a=None, size=size,
replace=replace, ctx=ctx, weighted=True)
return _npi.take(a, indices)
else:
if p is None:
return _npi.choice(a=a, size=size, replace=replace, ctx=ctx, weighted=False)
else:
return _npi.choice(p, a=a, size=size, replace=replace, ctx=ctx, weighted=True)
81 changes: 81 additions & 0 deletions src/operator/numpy/random/np_choice_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2019 by Contributors
* \file np_choice_op.cc
* \brief Operator for random subset sampling
*/

#include "./np_choice_op.h"
#include <algorithm>

namespace mxnet {
namespace op {

template <>
void _sort<cpu>(float* key, int64_t* data, index_t length) {
std::sort(data, data + length,
[key](int64_t const& i, int64_t const& j) -> bool {
return key[i] > key[j];
});
}

DMLC_REGISTER_PARAMETER(NumpyChoiceParam);

NNVM_REGISTER_OP(_npi_choice)
.describe("random choice")
.set_num_inputs(
[](const nnvm::NodeAttrs& attrs) {
int num_input = 0;
const NumpyChoiceParam& param = nnvm::get<NumpyChoiceParam>(attrs.parsed);
if (param.weighted) num_input += 1;
if (!param.a.has_value()) num_input += 1;
return num_input;
})
.set_num_outputs(1)
.set_attr<nnvm::FListInputNames>(
"FListInputNames",
[](const NodeAttrs& attrs) {
int num_input = 0;
const NumpyChoiceParam& param =
nnvm::get<NumpyChoiceParam>(attrs.parsed);
if (param.weighted) num_input += 1;
if (!param.a.has_value()) num_input += 1;
if (num_input == 0) return std::vector<std::string>();
if (num_input == 1) return std::vector<std::string>{"input1"};
return std::vector<std::string>{"input1", "input2"};
})
.set_attr_parser(ParamParser<NumpyChoiceParam>)
.set_attr<mxnet::FInferShape>("FInferShape", NumpyChoiceOpShape)
.set_attr<nnvm::FInferType>("FInferType", NumpyChoiceOpType)
.set_attr<FResourceRequest>("FResourceRequest",
[](const nnvm::NodeAttrs& attrs) {
return std::vector<ResourceRequest>{
ResourceRequest::kRandom,
ResourceRequest::kTempSpace};
})
.set_attr<FCompute>("FCompute<cpu>", NumpyChoiceForward<cpu>)
.set_attr<nnvm::FGradient>("FGradient", MakeZeroGradNodes)
.add_argument("input1", "NDArray-or-Symbol", "Source input")
.add_argument("input2", "NDArray-or-Symbol", "Source input")
.add_arguments(NumpyChoiceParam::__FIELDS__());

} // namespace op
} // namespace mxnet
46 changes: 46 additions & 0 deletions src/operator/numpy/random/np_choice_op.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2019 by Contributors
* \file np_choice_op.cu
* \brief Operator for random subset sampling
*/

#include <thrust/execution_policy.h>
#include <thrust/sort.h>
#include <thrust/swap.h>
#include "./np_choice_op.h"

namespace mxnet {
namespace op {

template <>
void _sort<gpu>(float* key, int64_t* data, index_t length) {
thrust::device_ptr<float> dev_key(key);
thrust::device_ptr<int64_t> dev_data(data);
thrust::sort_by_key(dev_key, dev_key + length, dev_data,
thrust::greater<float>());
}

NNVM_REGISTER_OP(_npi_choice)
.set_attr<FCompute>("FCompute<gpu>", NumpyChoiceForward<gpu>);

} // namespace op
} // namespace mxnet
Loading