Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[v1.5.x] prevent TRT_Logger to be destroyed before TRT engine (#14898) #15877

Merged
merged 1 commit into from
Aug 16, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
35 changes: 11 additions & 24 deletions src/operator/subgraph/tensorrt/onnx_to_tensorrt.cc
Original file line number Diff line number Diff line change
Expand Up @@ -48,23 +48,6 @@ using std::endl;

namespace onnx_to_tensorrt {

struct InferDeleter {
template<typename T>
void operator()(T* obj) const {
if ( obj ) {
obj->destroy();
}
}
};

template<typename T>
inline std::shared_ptr<T> InferObject(T* obj) {
if ( !obj ) {
throw std::runtime_error("Failed to create object");
}
return std::shared_ptr<T>(obj, InferDeleter());
}

std::string onnx_ir_version_string(int64_t ir_version = onnx::IR_VERSION) {
int onnx_ir_major = ir_version / 1000000;
int onnx_ir_minor = ir_version % 1000000 / 10000;
Expand All @@ -83,18 +66,20 @@ void PrintVersion() {
<< NV_TENSORRT_PATCH << endl;
}

std::tuple<nvinfer1::ICudaEngine*, nvonnxparser::IParser*> onnxToTrtCtx(
std::tuple<unique_ptr<nvinfer1::ICudaEngine>,
unique_ptr<nvonnxparser::IParser>,
std::unique_ptr<TRT_Logger> > onnxToTrtCtx(
const std::string& onnx_model,
int32_t max_batch_size,
size_t max_workspace_size,
nvinfer1::ILogger::Severity verbosity,
bool debug_builder) {
GOOGLE_PROTOBUF_VERIFY_VERSION;

TRT_Logger trt_logger(verbosity);
auto trt_builder = InferObject(nvinfer1::createInferBuilder(trt_logger));
auto trt_network = InferObject(trt_builder->createNetwork());
auto trt_parser = nvonnxparser::createParser(trt_network.get(), trt_logger);
auto trt_logger = std::unique_ptr<TRT_Logger>(new TRT_Logger(verbosity));
auto trt_builder = nvinfer1::createInferBuilder(*trt_logger);
auto trt_network = trt_builder->createNetwork();
auto trt_parser = InferObject(nvonnxparser::createParser(trt_network, *trt_logger));
::ONNX_NAMESPACE::ModelProto parsed_model;
// We check for a valid parse, but the main effect is the side effect
// of populating parsed_model
Expand Down Expand Up @@ -139,8 +124,10 @@ std::tuple<nvinfer1::ICudaEngine*, nvonnxparser::IParser*> onnxToTrtCtx(
trt_builder->setMaxBatchSize(max_batch_size);
trt_builder->setMaxWorkspaceSize(max_workspace_size);
trt_builder->setDebugSync(debug_builder);
nvinfer1::ICudaEngine* trt_engine = trt_builder->buildCudaEngine(*trt_network.get());
return std::make_tuple(trt_engine, trt_parser);
auto trt_engine = InferObject(trt_builder->buildCudaEngine(*trt_network));
trt_builder->destroy();
trt_network->destroy();
return std::make_tuple(std::move(trt_engine), std::move(trt_parser), std::move(trt_logger));
}

} // namespace onnx_to_tensorrt
Expand Down
66 changes: 42 additions & 24 deletions src/operator/subgraph/tensorrt/onnx_to_tensorrt.h
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@
#include <NvInfer.h>

#include <fstream>
#include <memory>
#include <iostream>
#include <sstream>
#include <string>
Expand All @@ -40,33 +41,51 @@

namespace onnx_to_tensorrt {

struct InferDeleter {
template<typename T>
void operator()(T* obj) const {
if ( obj ) {
obj->destroy();
}
}
};

template<typename T>
using unique_ptr = std::unique_ptr<T, InferDeleter>;

template<typename T>
inline unique_ptr<T> InferObject(T* obj) {
if ( !obj ) {
throw std::runtime_error("Failed to create object");
}
return unique_ptr<T>(obj, InferDeleter());
}

class TRT_Logger : public nvinfer1::ILogger {
nvinfer1::ILogger::Severity _verbosity;
std::ostream* _ostream;
nvinfer1::ILogger::Severity _verbosity;
std::ostream* _ostream;
public:
TRT_Logger(Severity verbosity = Severity::kWARNING,
std::ostream& ostream = std::cout)
: _verbosity(verbosity), _ostream(&ostream) {}
void log(Severity severity, const char* msg) override {
if ( severity <= _verbosity ) {
time_t rawtime = std::time(0);
char buf[256];
strftime(&buf[0], 256,
"%Y-%m-%d %H:%M:%S",
std::gmtime(&rawtime));
const char* sevstr = (severity == Severity::kINTERNAL_ERROR ? " BUG" :
severity == Severity::kERROR ? " ERROR" :
severity == Severity::kWARNING ? "WARNING" :
severity == Severity::kINFO ? " INFO" :
"UNKNOWN");
(*_ostream) << "[" << buf << " " << sevstr << "] "
<< msg
<< std::endl;
}
}
TRT_Logger(Severity verbosity = Severity::kWARNING,
std::ostream& ostream = std::cout) :
_verbosity(verbosity), _ostream(&ostream) {}
void log(Severity severity, const char* msg) override {
if (severity <= _verbosity) {
time_t rawtime = std::time(0);
char buf[256];
strftime(&buf[0], 256, "%Y-%m-%d %H:%M:%S", std::gmtime(&rawtime));
const char* sevstr = (severity == Severity::kINTERNAL_ERROR ? " BUG" :
severity == Severity::kERROR ? " ERROR" :
severity == Severity::kWARNING ? "WARNING" :
severity == Severity::kINFO ? " INFO" :
"UNKNOWN");
(*_ostream) << "[" << buf << " " << sevstr << "] " << msg << std::endl;
}
}
};

std::tuple<nvinfer1::ICudaEngine*, nvonnxparser::IParser*> onnxToTrtCtx(
std::tuple<unique_ptr<nvinfer1::ICudaEngine>,
unique_ptr<nvonnxparser::IParser>,
std::unique_ptr<TRT_Logger> > onnxToTrtCtx(
const std::string& onnx_model,
int32_t max_batch_size = 32,
size_t max_workspace_size = 1L << 30,
Expand All @@ -75,5 +94,4 @@ std::tuple<nvinfer1::ICudaEngine*, nvonnxparser::IParser*> onnxToTrtCtx(
} // namespace onnx_to_tensorrt

#endif // MXNET_USE_TENSORRT

#endif // MXNET_OPERATOR_SUBGRAPH_TENSORRT_ONNX_TO_TENSORRT_H_
25 changes: 13 additions & 12 deletions src/operator/subgraph/tensorrt/tensorrt-inl.h
Original file line number Diff line number Diff line change
Expand Up @@ -51,10 +51,14 @@ struct TRTParam {
};

struct TRTEngineParam {
TRTEngineParam(nvinfer1::ICudaEngine* trt_engine,
nvonnxparser::IParser* _parser,
const std::unordered_map<std::string, uint32_t> input_map,
const std::unordered_map<std::string, uint32_t> output_map) {
TRTEngineParam(onnx_to_tensorrt::unique_ptr<nvinfer1::ICudaEngine> _trt_engine,
onnx_to_tensorrt::unique_ptr<nvonnxparser::IParser> _trt_parser,
std::unique_ptr<onnx_to_tensorrt::TRT_Logger> _trt_logger,
const std::unordered_map<std::string, uint32_t>& input_map,
const std::unordered_map<std::string, uint32_t>& output_map) {
trt_engine = std::move(_trt_engine);
trt_logger = std::move(_trt_logger);
trt_parser = std::move(_trt_parser);
binding_order = std::make_shared<std::vector<std::pair<uint32_t, bool> > >();
bindings = std::make_shared<std::vector<void*> >();
binding_order->reserve(trt_engine->getNbBindings());
Expand All @@ -67,16 +71,13 @@ struct TRTEngineParam {
binding_order->emplace_back(output_map.at(binding_name), false);
}
}
trt_executor = trt_engine->createExecutionContext();
trt_parser = _parser;
trt_executor = onnx_to_tensorrt::InferObject(trt_engine->createExecutionContext());
}

~TRTEngineParam() {
trt_parser->destroy();
trt_executor->destroy();
}
nvinfer1::IExecutionContext* trt_executor;
nvonnxparser::IParser* trt_parser;
onnx_to_tensorrt::unique_ptr<nvinfer1::ICudaEngine> trt_engine;
onnx_to_tensorrt::unique_ptr<nvinfer1::IExecutionContext> trt_executor;
onnx_to_tensorrt::unique_ptr<nvonnxparser::IParser> trt_parser;
std::unique_ptr<onnx_to_tensorrt::TRT_Logger> trt_logger;
std::shared_ptr<std::vector<std::pair<uint32_t, bool> > > binding_order;
std::shared_ptr<std::vector<void*> > bindings;
};
Expand Down
4 changes: 3 additions & 1 deletion src/operator/subgraph/tensorrt/tensorrt.cc
Original file line number Diff line number Diff line change
Expand Up @@ -312,7 +312,9 @@ OpStatePtr TRTCreateState(const nnvm::NodeAttrs& attrs, Context ctx,
graph.attrs["shape"] = std::make_shared<nnvm::any>(std::move(shapes));
auto onnx_graph = op::nnvm_to_onnx::ConvertNnvmGraphToOnnx(graph, &params_map);
auto trt_tuple = ::onnx_to_tensorrt::onnxToTrtCtx(onnx_graph, max_batch_size, 1 << 30);
return OpStatePtr::Create<TRTEngineParam>(std::get<0>(trt_tuple), std::get<1>(trt_tuple),
return OpStatePtr::Create<TRTEngineParam>(std::move(std::get<0>(trt_tuple)),
std::move(std::get<1>(trt_tuple)),
std::move(std::get<2>(trt_tuple)),
inputs_to_idx, outputs_to_idx);
}

Expand Down