Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Large tensor support for random ops #15783

Merged
merged 12 commits into from
Aug 14, 2019
83 changes: 83 additions & 0 deletions tests/nightly/test_large_array.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@
# dimension constants
MEDIUM_X = 10000
LARGE_X = 100000000
SMALL_X = 100
SMALL_Y = 50
LARGE_SIZE = LARGE_X * SMALL_Y

Expand Down Expand Up @@ -79,6 +80,88 @@ def test_ndarray_random_randint():
assert a.__gt__(low) and a.__lt__(high)


@with_seed()
def test_ndarray_random_exponential():
scale_array = nd.random.uniform(shape=(MEDIUM_X, SMALL_Y))
a = nd.random.exponential(scale=scale_array, shape=(SMALL_X, SMALL_Y))
assert a.shape == (MEDIUM_X, SMALL_Y, SMALL_X, SMALL_Y)
assert a[-1][0][0][0] >= 0


@with_seed()
def test_ndarray_random_gamma():
alpha_array = nd.random.uniform(shape=(MEDIUM_X, SMALL_Y))
beta_array = nd.random.uniform(shape=(MEDIUM_X, SMALL_Y))
a = nd.random.gamma(alpha=alpha_array, beta=beta_array,
shape=(SMALL_X, SMALL_Y))
assert a.shape == (MEDIUM_X, SMALL_Y, SMALL_X, SMALL_Y)
assert a[-1][0][0][0] >= 0


@with_seed()
def test_ndarray_random_multinomial():
# test 1 shape dimension
probs = nd.random.uniform(shape=(LARGE_X, SMALL_Y))
a = nd.random.multinomial(probs)
assert a.shape == (LARGE_X,)
assert a[-1] >= 0
# test for NDArray multi-dimension shape
a = nd.random.multinomial(probs, shape=(SMALL_X, SMALL_Y))
assert a.shape == (LARGE_X, SMALL_X, SMALL_Y)
assert a[-1][0][0] >= 0
# test log_likelihood output shape
a = nd.random.multinomial(probs, shape=(SMALL_X, SMALL_Y), get_prob=True)
assert a[0].shape == (LARGE_X, SMALL_X, SMALL_Y) and a[0].shape == a[1].shape
assert a[-1][0][0] >= 0


@with_seed()
def test_ndarray_random_generalized_negative_binomial():
alpha_array = nd.random.uniform(shape=(MEDIUM_X, SMALL_Y))
mu_array = nd.random.uniform(shape=(MEDIUM_X, SMALL_Y))
a = nd.random.generalized_negative_binomial(mu=mu_array, alpha=alpha_array,
shape=(SMALL_X, SMALL_Y))
assert a.shape == (MEDIUM_X, SMALL_Y, SMALL_X, SMALL_Y)
assert a[-1][0][0][0] >= 0


@with_seed()
def test_ndarray_random_negative_binomial():
k_array = nd.random.uniform(shape=(MEDIUM_X, SMALL_Y))
p_array = nd.random.uniform(shape=(MEDIUM_X, SMALL_Y))
a = nd.random.negative_binomial(k=k_array, p=p_array,
shape=(SMALL_X, SMALL_Y))
assert a.shape == (MEDIUM_X, SMALL_Y, SMALL_X, SMALL_Y)
assert a[-1][0][0][0] >= 0


@with_seed()
def test_ndarray_random_normal():
scale_array = nd.random.uniform(shape=(MEDIUM_X, SMALL_Y))
loc_array = nd.random.uniform(shape=(MEDIUM_X, SMALL_Y))
a = nd.random.normal(loc=loc_array, scale=scale_array,
shape=(SMALL_X, SMALL_Y))
assert a.shape == (MEDIUM_X, SMALL_Y, SMALL_X, SMALL_Y)
assert a[-1][0][0][0] >= 0


@with_seed()
def test_ndarray_random_poisson():
lambda_array = nd.random.uniform(shape=(MEDIUM_X, SMALL_Y))
a = nd.random.poisson(lam=lambda_array, shape=(SMALL_X, SMALL_Y))
assert a.shape == (MEDIUM_X, SMALL_Y, SMALL_X, SMALL_Y)
assert a[-1][0][0][0] >= 0


@with_seed()
def test_ndarray_random_randn():
a = nd.random.randn(LARGE_X, SMALL_Y)
assert a.shape == (LARGE_X, SMALL_Y)
assert a[-1][0] >= 0
# TODO: Once PR for randn ndarray dtype for loc,scale param merged
# Add check for (x,y,m,n) where x,y shape of loc,scale and m,n input shape


def test_ndarray_empty():
a = nd.empty((LARGE_X, SMALL_Y))
assert a.shape == (LARGE_X, SMALL_Y)
Expand Down