Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Commit

Permalink
[v1.x] Refactor onnx tests for object classification, add object dete…
Browse files Browse the repository at this point in the history
…ction tests (#19802)

* Fix onnx export of arange when stop is none. Refactor unit test to cover case.

* Use correct outname names for SliceChannel.

* Cast output of broadcast_equal to input type, like MXNet does.

* Add unit test for broadcast_equal onnx export.

* Require onnx opset >= 11 for SliceChannel which doesn't require the splits attribute for onnx Split operator. Add operator unit test for SliceChannel.

* Support passing dtype to zeros_like and ones_like.

* Refactor object classification tests to make more extendable and add object detection tests with currently supported models.

* Fix lint

* Update onnxruntime in CI to 1.6.0.

* Install gluoncv in CI environment for onnxruntime tests.

* Add test case for negative axis in SliceChannel.

* Add export functions and unit tests for broadcast_minimum and lesser_scalar operators.

Co-authored-by: Joe Evans <[email protected]>
  • Loading branch information
josephevans and Joe Evans authored Feb 2, 2021
1 parent 76c8c7d commit 5637325
Show file tree
Hide file tree
Showing 4 changed files with 224 additions and 86 deletions.
2 changes: 1 addition & 1 deletion ci/docker/install/ubuntu_onnx.sh
Original file line number Diff line number Diff line change
Expand Up @@ -31,4 +31,4 @@ apt-get update || true
apt-get install -y libprotobuf-dev protobuf-compiler

echo "Installing pytest, pytest-cov, protobuf, Pillow, ONNX, tabulate and onnxruntime..."
pip3 install pytest pytest-cov protobuf==3.5.2 onnx==1.7.0 Pillow==5.0.0 tabulate==0.7.5 onnxruntime==1.4.0 gluonnlp
pip3 install pytest pytest-cov protobuf==3.5.2 onnx==1.7.0 Pillow==5.0.0 tabulate==0.7.5 onnxruntime==1.6.0 gluonnlp gluoncv
84 changes: 72 additions & 12 deletions python/mxnet/contrib/onnx/mx2onnx/_op_translations.py
Original file line number Diff line number Diff line change
Expand Up @@ -1548,6 +1548,13 @@ def convert_broadcast_mul(node, **kwargs):
"""
return create_basic_op_node('Mul', node, kwargs)

@mx_op.register("broadcast_minimum")
def convert_broadcast_min(node, **kwargs):
"""Map MXNet's broadcast_minimum operator attributes to onnx's Min operator
and return the created node.
"""
return create_basic_op_node('Min', node, kwargs)

@mx_op.register("elemwise_div")
def convert_elemwise_div(node, **kwargs):
"""Map MXNet's elemwise_div operator attributes to onnx's Div operator
Expand Down Expand Up @@ -1719,6 +1726,10 @@ def convert_slice_channel(node, **kwargs):
"""
name, input_nodes, attrs = get_inputs(node, kwargs)

opset_version = kwargs['opset_version']
if opset_version < 11:
raise AttributeError('ONNX opset 11 or greater is required to export this operator')

num_outputs = int(attrs.get("num_outputs"))
axis = int(attrs.get("axis", 1))
squeeze_axis = int(attrs.get("squeeze_axis", 0))
Expand All @@ -1733,15 +1744,12 @@ def convert_slice_channel(node, **kwargs):
)
return [node]
elif squeeze_axis == 0 and num_outputs > 1:
in_shape = kwargs.get('in_shape')[0]
split = in_shape[axis] // num_outputs
node = onnx.helper.make_node(
"Split",
input_nodes,
[name+'_output'+str(i) for i in range(num_outputs)],
[name+str(i) for i in range(num_outputs)],
axis=axis,
split=[split for _ in range(num_outputs)],
name=name,
name=name
)
return [node]
else:
Expand Down Expand Up @@ -1973,7 +1981,15 @@ def convert_broadcast_equal(node, **kwargs):
"""Map MXNet's broadcast_equal operator attributes to onnx's Equal operator
and return the created node.
"""
return create_basic_op_node('Equal', node, kwargs)
from onnx.helper import make_node
name, input_nodes, _ = get_inputs(node, kwargs)
input_type = kwargs['in_type']

nodes = [
make_node("Equal", input_nodes, [name+"_equal"]),
make_node("Cast", [name+"_equal"], [name], name=name, to=int(input_type))
]
return nodes


@mx_op.register("broadcast_logical_and")
Expand Down Expand Up @@ -2682,10 +2698,15 @@ def convert_zeros_like(node, **kwargs):
"""Map MXNet's zeros_like operator attributes to onnx's ConstantOfShape operator.
"""
from onnx.helper import make_node, make_tensor
name, input_nodes, _ = get_inputs(node, kwargs)
name, input_nodes, attrs = get_inputs(node, kwargs)
dtype = attrs.get('dtype')
if dtype is not None:
data_type = onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(dtype)]
else:
data_type = kwargs['in_type']

# create tensor with shape of input
tensor_value = make_tensor(name+"_zero", kwargs['in_type'], [1], [0])
tensor_value = make_tensor(name+"_zero", data_type, [1], [0])
nodes = [
make_node("Shape", [input_nodes[0]], [name+"_shape"]),
make_node("ConstantOfShape", [name+"_shape"], [name], name=name, value=tensor_value)
Expand All @@ -2698,10 +2719,14 @@ def convert_ones_like(node, **kwargs):
"""Map MXNet's ones_like operator attributes to onnx's ConstantOfShape operator.
"""
from onnx.helper import make_node, make_tensor
name, input_nodes, _ = get_inputs(node, kwargs)

name, input_nodes, attrs = get_inputs(node, kwargs)
dtype = attrs.get('dtype')
if dtype is not None:
data_type = onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(dtype)]
else:
data_type = kwargs['in_type']
# create tensor with shape of input
tensor_value = make_tensor(name+"_one", kwargs['in_type'], [1], [1])
tensor_value = make_tensor(name+"_one", data_type, [1], [1])
nodes = [
make_node("Shape", [input_nodes[0]], [name+"_shape"]),
make_node("ConstantOfShape", [name+"_shape"], [name], name=name, value=tensor_value)
Expand Down Expand Up @@ -2839,6 +2864,11 @@ def convert_arange(node, **kwargs):
step = attrs.get('step', 1.)
dtype = attrs.get('dtype', 'float32')
repeat = int(attrs.get('repeat', 1))

if stop == 'None':
stop = start
start = 0

if repeat != 1:
raise NotImplementedError("arange operator with repeat != 1 not yet implemented.")

Expand Down Expand Up @@ -3093,6 +3123,36 @@ def convert_greater_scalar(node, **kwargs):
return nodes


@mx_op.register("_lesser_scalar")
def convert_lesser_scalar(node, **kwargs):
"""Map MXNet's lesser_scalar operator attributes to onnx's Less
operator and return the created node.
"""
from onnx.helper import make_node, make_tensor
name, input_nodes, attrs = get_inputs(node, kwargs)

scalar = float(attrs.get('scalar'))
input_type = kwargs['in_type']
dtype = onnx.mapping.TENSOR_TYPE_TO_NP_TYPE[input_type]

if str(dtype).startswith('int'):
scalar = int(scalar)
else:
if dtype == 'float16':
# when using float16, we must convert it to np.uint16 view first
# pylint: disable=too-many-function-args
scalar = np.float16(scalar).view(np.uint16)

tensor_value = make_tensor(name+"_scalar", input_type, [1], [scalar])
nodes = [
make_node("Shape", [input_nodes[0]], [name+"_shape"]),
make_node("ConstantOfShape", [name+"_shape"], [name+"_rhs"], value=tensor_value),
make_node("Less", [input_nodes[0], name+"_rhs"], [name+"_lt"]),
make_node("Cast", [name+"_lt"], [name], to=input_type, name=name)
]
return nodes


@mx_op.register("where")
def convert_where(node, **kwargs):
"""Map MXNet's where operator attributes to onnx's Where
Expand Down Expand Up @@ -3252,7 +3312,7 @@ def convert_broadcast_mod(node, **kwargs):
make_node('Where', [name+'_mask', input_nodes[1], name+'_zero'], [name+'_adjustment']),
make_node('Add', [name+'_mod', name+'_adjustment'], [name+'_adjusted']),
make_node('Equal', [input_nodes[1], name+'_zero'], [name+'_mask_div_0']),
make_node('Where', [name+'_mask_div_0', name+'_zero', name+'_adjusted'], [name])
make_node('Where', [name+'_mask_div_0', name+'_zero', name+'_adjusted'], [name], name=name)
]

return nodes
Expand Down
172 changes: 104 additions & 68 deletions tests/python-pytest/onnx/test_onnxruntime.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@

import mxnet as mx
import numpy as np
import gluoncv
import onnxruntime

from mxnet.test_utils import assert_almost_equal
Expand All @@ -27,99 +28,134 @@
import pytest
import shutil

# images that are tested and their accepted classes
test_images = [
['dog.jpg', [242,243]],
['apron.jpg', [411,578,638,639,689,775]],
['dolphin.jpg', [2,3,4,146,147,148,395]],
['hammerheadshark.jpg', [3,4]],
['lotus.jpg', [716,723,738,985]]
]

test_models = [

class GluonModel():
def __init__(self, model_name, input_shape, input_dtype, tmpdir):
self.model_name = model_name
self.input_shape = input_shape
self.input_dtype = input_dtype
self.modelpath = os.path.join(tmpdir, model_name)
self.ctx = mx.cpu(0)
self.get_model()
self.export()

def get_model(self):
self.model = mx.gluon.model_zoo.vision.get_model(self.model_name, pretrained=True, ctx=self.ctx, root=self.modelpath)
self.model.hybridize()

def export(self):
data = mx.nd.zeros(self.input_shape, dtype=self.input_dtype, ctx=self.ctx)
self.model.forward(data)
self.model.export(self.modelpath, 0)

def export_onnx(self):
onnx_file = self.modelpath + ".onnx"
mx.contrib.onnx.export_model(self.modelpath + "-symbol.json", self.modelpath + "-0000.params",
[self.input_shape], self.input_dtype, onnx_file)
return onnx_file

def predict(self, data):
return self.model(data)


def download_test_images(image_urls, tmpdir):
from urllib.parse import urlparse
paths = []
for url in image_urls:
filename = os.path.join(tmpdir, os.path.basename(urlparse(url).path))
mx.test_utils.download(url, fname=filename)
paths.append(filename)
return paths

@pytest.mark.parametrize('model', [
'alexnet', 'densenet121', 'densenet161', 'densenet169', 'densenet201',
'mobilenet1.0', 'mobilenet0.75', 'mobilenet0.5', 'mobilenet0.25',
'mobilenetv2_1.0', 'mobilenetv2_0.75', 'mobilenetv2_0.5', 'mobilenetv2_0.25',
'resnet18_v1', 'resnet18_v2', 'resnet34_v1', 'resnet34_v2', 'resnet50_v1', 'resnet50_v2',
'resnet101_v1', 'resnet101_v2', 'resnet152_v1', 'resnet152_v2',
'squeezenet1.0', 'squeezenet1.1',
'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn', 'vgg19', 'vgg19_bn'
]

@with_seed()
@pytest.mark.parametrize('model', test_models)
def test_cv_model_inference_onnxruntime(tmp_path, model):
def get_gluon_cv_model(model_name, tmp):
tmpfile = os.path.join(tmp, model_name)
ctx = mx.cpu(0)
net_fp32 = mx.gluon.model_zoo.vision.get_model(model_name, pretrained=True, ctx=ctx, root=tmp)
net_fp32.hybridize()
data = mx.nd.zeros((1,3,224,224), dtype='float32', ctx=ctx)
net_fp32.forward(data)
net_fp32.export(tmpfile, 0)
sym_file = tmpfile + '-symbol.json'
params_file = tmpfile + '-0000.params'
return sym_file, params_file

def export_model_to_onnx(sym_file, params_file):
input_shape = (1,3,224,224)
onnx_file = os.path.join(os.path.dirname(sym_file), "model.onnx")
converted_model_path = mx.contrib.onnx.export_model(sym_file, params_file, [input_shape],
np.float32, onnx_file)
return onnx_file

])
def test_obj_class_model_inference_onnxruntime(tmp_path, model):
def normalize_image(imgfile):
image = mx.image.imread(imgfile).asnumpy()
image_data = np.array(image).transpose(2, 0, 1)
img_data = image_data.astype('float32')
mean_vec = np.array([0.485, 0.456, 0.406])
stddev_vec = np.array([0.229, 0.224, 0.225])
norm_img_data = np.zeros(img_data.shape).astype('float32')
img_data = mx.image.imread(imgfile).transpose([2, 0, 1]).astype('float32')
mean_vec = mx.nd.array([0.485, 0.456, 0.406])
stddev_vec = mx.nd.array([0.229, 0.224, 0.225])
norm_img_data = mx.nd.zeros(img_data.shape).astype('float32')
for i in range(img_data.shape[0]):
norm_img_data[i,:,:] = (img_data[i,:,:]/255 - mean_vec[i]) / stddev_vec[i]
return norm_img_data.reshape(1, 3, 224, 224).astype('float32')

def get_prediction(model, image):
pass
try:
tmp_path = str(tmp_path)
M = GluonModel(model, (1,3,224,224), 'float32', tmp_path)
onnx_file = M.export_onnx()

# create onnxruntime session using the generated onnx file
ses_opt = onnxruntime.SessionOptions()
ses_opt.log_severity_level = 3
session = onnxruntime.InferenceSession(onnx_file, ses_opt)
input_name = session.get_inputs()[0].name

def softmax(x):
x = x.reshape(-1)
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum(axis=0)
test_image_urls = [
'https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/doc/tutorials/onnx/images/dog.jpg',
'https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/doc/tutorials/onnx/images/apron.jpg',
'https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/doc/tutorials/onnx/images/dolphin.jpg',
'https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/doc/tutorials/onnx/images/hammerheadshark.jpg',
'https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/doc/tutorials/onnx/images/lotus.jpg'
]

def load_imgnet_labels(tmpdir):
tmpfile = os.path.join(tmpdir, 'image_net_labels.json')
mx.test_utils.download('https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/doc/tutorials/onnx/image_net_labels.json',
fname=tmpfile)
return np.array(json.load(open(tmpfile, 'r')))
for img in download_test_images(test_image_urls, tmp_path):
img_data = normalize_image(img)
mx_result = M.predict(img_data)
onnx_result = session.run([], {input_name: img_data.asnumpy()})[0]
assert_almost_equal(mx_result, onnx_result)

def download_test_images(tmpdir):
global test_images
for f,_ in test_images:
mx.test_utils.download('https://github.com/dmlc/web-data/blob/master/mxnet/doc/tutorials/onnx/images/'+f+'?raw=true',
fname=os.path.join(tmpdir, f))
return test_images
finally:
shutil.rmtree(tmp_path)


tmp_path = str(tmp_path)
try:
#labels = load_imgnet_labels(tmp_path)
test_images = download_test_images(tmp_path)
sym_file, params_file = get_gluon_cv_model(model, tmp_path)
onnx_file = export_model_to_onnx(sym_file, params_file)

class GluonCVModel(GluonModel):
def __init__(self, *args, **kwargs):
super(GluonCVModel, self).__init__(*args, **kwargs)
def get_model(self):
self.model = gluoncv.model_zoo.get_model(self.model_name, pretrained=True, ctx=self.ctx)
self.model.hybridize()

@pytest.mark.parametrize('model', [
'center_net_resnet18_v1b_voc',
'center_net_resnet50_v1b_voc',
'center_net_resnet101_v1b_voc',
'center_net_resnet18_v1b_coco',
'center_net_resnet50_v1b_coco',
'center_net_resnet101_v1b_coco'
])
def test_obj_detection_model_inference_onnxruntime(tmp_path, model):
def normalize_image(imgfile):
x, _ = gluoncv.data.transforms.presets.center_net.load_test(imgfile, short=512)
return x

try:
tmp_path = str(tmp_path)
M = GluonCVModel(model, (1,3,512,683), 'float32', tmp_path)
onnx_file = M.export_onnx()
# create onnxruntime session using the generated onnx file
ses_opt = onnxruntime.SessionOptions()
ses_opt.log_severity_level = 3
session = onnxruntime.InferenceSession(onnx_file, ses_opt)
input_name = session.get_inputs()[0].name

for img, accepted_ids in test_images:
img_data = normalize_image(os.path.join(tmp_path,img))
raw_result = session.run([], {input_name: img_data})
res = softmax(np.array(raw_result)).tolist()
class_idx = np.argmax(res)
assert(class_idx in accepted_ids)
test_image_urls = ['https://raw.githubusercontent.com/zhreshold/mxnet-ssd/master/data/demo/dog.jpg']

for img in download_test_images(test_image_urls, tmp_path):
img_data = normalize_image(os.path.join(tmp_path, img))
mx_class_ids, mx_scores, mx_boxes = M.predict(img_data)
onnx_scores, onnx_class_ids, onnx_boxes = session.run([], {input_name: img_data.asnumpy()})
assert_almost_equal(mx_class_ids, onnx_class_ids)
assert_almost_equal(mx_scores, onnx_scores)
assert_almost_equal(mx_boxes, onnx_boxes)

finally:
shutil.rmtree(tmp_path)
Expand Down
Loading

0 comments on commit 5637325

Please sign in to comment.