Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Commit

Permalink
Add symbol api for randn and fix shape issue for randn ndarray and sy…
Browse files Browse the repository at this point in the history
…mbol api (#15772)

* symbol api for randn, fix shape issue for randn ndarray and symbol api

* address comments; add unit test for symbol and check for NDArray

* shape issue

* address comments - unit test, doc fix, etc

* remove prints, test randn for symbol and multidistribution

* Trigger notification bcoz data.mxnet.io failed

* removed stray file

* Trigger notification bcoz R/cpu failed

* add to symbol doc
  • Loading branch information
ChaiBapchya authored and roywei committed Aug 25, 2019
1 parent 77a633f commit 2e4242e
Show file tree
Hide file tree
Showing 4 changed files with 48 additions and 9 deletions.
1 change: 1 addition & 0 deletions docs/api/python/symbol/symbol.md
Original file line number Diff line number Diff line change
Expand Up @@ -612,6 +612,7 @@ Composite multiple symbols into a new one by an operator.
random.normal
random.poisson
random.randint
random.randn
random.shuffle
random.uniform
mxnet.random.seed
Expand Down
4 changes: 2 additions & 2 deletions python/mxnet/ndarray/random.py
Original file line number Diff line number Diff line change
Expand Up @@ -220,8 +220,8 @@ def randn(*shape, **kwargs):
dtype = kwargs.pop('dtype', _Null)
ctx = kwargs.pop('ctx', None)
out = kwargs.pop('out', None)
assert isinstance(loc, (int, float))
assert isinstance(scale, (int, float))
assert isinstance(loc, (int, float, NDArray))
assert isinstance(scale, (int, float, NDArray))
return _random_helper(_internal._random_normal, _internal._sample_normal,
[loc, scale], shape, dtype, ctx, out, kwargs)

Expand Down
32 changes: 31 additions & 1 deletion python/mxnet/symbol/random.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@
from .symbol import Symbol


__all__ = ['uniform', 'normal', 'poisson', 'exponential', 'gamma', 'multinomial',
__all__ = ['uniform', 'normal', 'randn', 'poisson', 'exponential', 'gamma', 'multinomial',
'negative_binomial', 'generalized_negative_binomial', 'shuffle', 'randint']


Expand Down Expand Up @@ -113,6 +113,36 @@ def normal(loc=0, scale=1, shape=_Null, dtype=_Null, **kwargs):
[loc, scale], shape, dtype, kwargs)


def randn(*shape, **kwargs):
"""Draw random samples from a normal (Gaussian) distribution.
Samples are distributed according to a normal distribution parametrized
by *loc* (mean) and *scale* (standard deviation).
Parameters
----------
loc : float or Symbol, optional
Mean (centre) of the distribution.
scale : float or Symbol, optional
Standard deviation (spread or width) of the distribution.
shape : int or tuple of ints
The number of samples to draw. If shape is, e.g., `(m, n)` and `loc` and
`scale` are scalars, output shape will be `(m, n)`. If `loc` and `scale`
are NDArrays with shape, e.g., `(x, y)`, then output will have shape
`(x, y, m, n)`, where `m*n` samples are drawn for each `[loc, scale)` pair.
dtype : {'float16', 'float32', 'float64'}, optional
Data type of output samples. Default is 'float32'
"""
loc = kwargs.pop('loc', 0)
scale = kwargs.pop('scale', 1)
dtype = kwargs.pop('dtype', _Null)
assert isinstance(loc, (int, float, Symbol))
assert isinstance(scale, (int, float, Symbol))
return _random_helper(_internal._random_normal, _internal._sample_normal,
[loc, scale], shape, dtype, kwargs)


def poisson(lam=1, shape=_Null, dtype=_Null, **kwargs):
"""Draw random samples from a Poisson distribution.
Expand Down
20 changes: 14 additions & 6 deletions tests/python/unittest/test_random.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,8 +61,10 @@ def check_with_device(device, dtype):
},
{
'name': 'randn',
'symbol': mx.sym.random.randn,
'ndop': mx.nd.random.randn,
'params': { 'loc': 10.0, 'scale': 0.5 },
'inputs': [ ('loc',[ [ 0.0, 2.5 ], [ -9.75, -7.0 ] ]) , ('scale',[ [ 1.0, 3.7 ], [ 4.2, 1.5 ] ]) ],
'checks': [
('mean', lambda x, params: np.mean(x.astype(np.float64) - params['loc']), tol),
('std', lambda x, params: np.std(x.astype(np.float64)) - params['scale'], tol)
Expand Down Expand Up @@ -250,6 +252,9 @@ def check_with_device(device, dtype):

params = {'shape': shape, 'dtype': dtype, 'ctx': device}
params.update({k : mx.nd.array(v, ctx=device, dtype=dtype) for k, v in symbdic['inputs']})
if name == 'randn':
params.pop('shape') # randn does not accept shape param
args = shape
mx.random.seed(128)
ret1 = ndop(*args, **params).asnumpy()
mx.random.seed(128)
Expand All @@ -263,14 +268,12 @@ def check_with_device(device, dtype):
err = np.abs(check_func(ret2[i,j], stats))
assert err < tol, "%f vs %f: symbolic test: %s check for `%s` did not pass" % (err, tol, check_name, name)

if 'symbol' not in symbdic: continue # randn does not have symbol

# check symbolic
symbol = symbdic['symbol']
X = mx.sym.Variable("X")
params = symbdic['params'].copy()
params.update(shape=shape, dtype=dtype)
if name.endswith('_like'):
if name.endswith('_like') or name == 'randn':
params['data'] = mx.sym.ones(params.pop('shape'))
Y = symbol(**params) + X
x = mx.nd.zeros(shape, dtype=dtype, ctx=device)
Expand Down Expand Up @@ -298,7 +301,12 @@ def check_with_device(device, dtype):
single_param = len(symbdic['inputs']) == 1
v1 = mx.sym.Variable('v1')
v2 = mx.sym.Variable('v2')
Y = symbol(v1,**params) if single_param else symbol(v1,v2,**params)
if name == 'randn':
params.pop('shape') # randn does not accept shape param
args=shape
Y = symbol(v1, **params) if single_param else symbol(*args, loc=v1, scale=v2,**params)
else:
Y = symbol(v1,**params) if single_param else symbol(v1,v2,**params)
bindings = { 'v1' : mx.nd.array(symbdic['inputs'][0][1]) }
if not single_param :
bindings.update({ 'v2' : mx.nd.array(symbdic['inputs'][1][1]) })
Expand All @@ -315,9 +323,10 @@ def check_with_device(device, dtype):
for check_name, check_func, tol in symbdic['checks']:
assert np.abs(check_func(samples, params)) < tol, "symbolic test: %s check for `%s` did not pass" % (check_name, name)

if 'pdfsymbol' not in symbdic: continue # randn not tested for pdf

# check pdfs with only a subset of the generated samples
un1 = np.resize(un1, (un1.shape[0], un1.shape[1], pdfshape[0], pdfshape[1]))
print(name)
symbol = symbdic['pdfsymbol']
pdffunc = symbdic['pdffunc']
v0 = mx.sym.Variable('v0')
Expand Down Expand Up @@ -355,7 +364,6 @@ def check_with_device(device, dtype):
check_symbolic_forward(test_pdf, [un1, p1, p2], [res], atol=forw_atol, rtol=forw_rtol, dtype=dtype)
if dtype == np.float64:
grad_nodes = ['v1', 'v2'] if symbdic['discrete'] else ['v0', 'v1', 'v2']
print(backw_rtol)
check_numeric_gradient(test_pdf, [un1, p1, p2], grad_nodes=grad_nodes, atol=backw_atol, rtol=backw_rtol, dtype=dtype)

@with_seed(1000)
Expand Down

0 comments on commit 2e4242e

Please sign in to comment.