-
Notifications
You must be signed in to change notification settings - Fork 1.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
quantized.out int8量化后的模型在2.5.3版本及之后的CPU后端运行得到的各种错误结果 #2614
Labels
Comments
在latest的master分支上,如果把编译命令换成 cmake -D CMAKE_BUILD_TYPE=Release -D MNN_VULKAN=ON -D MNN_OPENCL=ON .. \
-D CMAKE_INSTALL_PREFIX=../install -D MNN_SEP_BUILD=OFF -D MNN_ARM82=ON -D MNN_BUILD_CONVERTER=ON -D MNN_BUILD_BENCHMARK=ON -D MNN_BUILD_QUANTOOLS=ON -D MNN_BUILD_DEMO=ON 再运行,得到如下结果 $ ./pictureRecognition.out mobilenetv3_large_100.mnn daisy.jpg
Load Cache file error.
The device support i8sdot:1, support fp16:1, support i8mm: 0
Turn back to cpu
Alloc Image 4 x 1 error, code:-59
Session Info: memory use 25.484230 MB, flops is 221.308746 M, backendType is 0, batch size = 1
input: w:224 , h:224, bpp: 3
origin size: 2100, 1500
For Image: daisy.jpg
985, 9.938413
308, 2.710280
310, 2.675846
309, 2.487967
883, 2.461747
324, 2.013629
949, 1.993125
326, 1.912460
107, 1.901566
770, 1.891451
Program build log: error: unknown target CPU 'sm_87'
Device Orin failed to build the program
Build program failed, err:-11 !
programName.c_str()=s copy_buffer_to_image2d in buildKernel, 511
CL ERROR CODE : -45, info:getKernel
[1] 600548 segmentation fault (core dumped) ./pictureRecognition.out mobilenetv3_large_100.mnn daisy.jpg 好歹结果是对了。。。。。。但这就很神奇啊 |
遇到同样问题,最新版本结果错误。但我用2.5.0版本推理量化模型会在runSession的时候段错误 |
问题已经定位修复 |
Marking as stale. No activity in 60 days. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
首先int8量化在版本2.5.0上运行的还是非常好的,为此我们以2.5.0版本为基准,编译命令为
测试设备为 Jetson Orin
为了和后面的量化配置文件配合,建议先打上patch
附件mobilenetv3_large_100.tar.gz中有一个
mobilenetv3_large_100.onnx
,可以通过如下命令进行转化量化preprocessConfig.json如下所示
这个校准的图片文件夹可以通过
git clone https://github.com/nihui/imagenet-sample-images.git
来获得因为上述操作比较麻烦,所以为了方便起见,附件压缩包中还放了已经转化量化好的模型
mobilenetv3_large_100.mnn
附加压缩包里附带了一张图片进行测试
daisy.jpg
, 运行命令如下:下面让我们看看各个版本的表现:
v2.5.0
v2.5.1
v2.5.3
v2.6.0
v2.6.3
latest
The text was updated successfully, but these errors were encountered: