-
Notifications
You must be signed in to change notification settings - Fork 1.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
quantized.out int8量化后的模型在CPU后端运行resnet50出错(已更新到最新commit版本) #2737
Comments
继续用经典的模型efficientnetv2_b0试了试 得到的量化完的运行结果: ./pictureRecognition.out tf_efficientnetv2_b0_Opset16.mnn daisy.jpg
Load Cache file error.
The device support i8sdot:1, support fp16:1, support i8mm: 0
Create execution error : 101
Create execution error : 101
Session Info: memory use 0.005398 MB, flops is 463.154877 M, backendType is 0, batch size = 1
input: w:192 , h:192, bpp: 3
origin size: 2100, 1500
Can't run session because not resized
For Image: daisy.jpg
21, 250908922840517956672101818055251722240.000000
971, 155706892288681663873593671155795886080.000000
558, 144564517325205176731988373268433207296.000000
952, 112714106392544388862589291026817482752.000000
485, 72253792300723863246554176667036680192.000000
280, 70477894939442528461738991265310048256.000000
255, 42867207357076265693574510722641035264.000000
930, 40476864538057105379101055316830191616.000000
234, 39606622401000425894973568566339567616.000000
39, 33638683099101550629631678460033236992.000000 这结果多少是有些抽象了 而未量化前的模型结果 ./pictureRecognition.out tmp.mnn daisy.jpg
Load Cache file error.
The device support i8sdot:1, support fp16:1, support i8mm: 0
Session Info: memory use 34.192852 MB, flops is 537.623291 M, backendType is 0, batch size = 1
input: w:192 , h:192, bpp: 3
origin size: 2100, 1500
For Image: daisy.jpg
985, 9.512913
89, 2.403510
322, 2.085096
108, 2.013274
883, 1.951369
309, 1.885692
113, 1.817128
968, 1.690546
770, 1.643703
738, 1.622023 看着就正常很多 |
我测试了结果没有不对啊,你用pictureRecognition_module.out 测试看看 |
@v0jiuqi 您确实是测试了量化后的模型了吗,能否贴一下您运行的分类结果让我看看,感谢! 然后我是在arm64的开发板jetson orin (不是在x86的机器上,这一点也请注意)上进行编译运行的 |
具体的量化流程可以参考#2614 |
另外我想问一下,官方是打算放弃Session接口,改用Module接口了吗 |
@v0jiuqi 可否提供一下你用pictureRecognition_module.out 测试的config.json文件,感谢 |
这个是我们的量化工具和后端不一致导致的,你等我们更新吧 |
好的,感谢 |
请问这个问题修复了吗 |
Marking as stale. No activity in 60 days. |
#2614
初步测试mobilenet看起来是正常了许多,感谢开发者的努力!
但和上述issue同样的复现方法,我又用resnet50试了试,得到的结果如下:
模型下载地址:https://github.com/onnx/models/raw/main/Computer_Vision/resnet50_Opset16_timm/resnet50_Opset16.onnx
有点好奇MNN里的量化框架有没有CI自动测试,为什么连最基本的reset50量化完都跑错
而未量化前的模型,被我命名为tmp.mnn (参考#2614 的操作流程),得到的分类结果就正常很多了
The text was updated successfully, but these errors were encountered: