-
Notifications
You must be signed in to change notification settings - Fork 431
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Pin dependencies exactly #14
Conversation
This ensures reproducible builds and no unintended updates even if a developer runs `cargo` on their own without one of the locking flags. We will explicitly manage them. Signed-off-by: Miguel Ojeda <[email protected]>
We have a lockfile for the workspace, what does this pin? |
|
What do you mean with break? |
So the man page says:
Therefore, if a dependency gets updated and we haven't pinned them, Cargo will want to update it, which means an error, no? Then there is What we want is that code never changes, for any reason whatsoever, unless someone explicitly changes it. Regardless of Cargo's flags, it sounds like explicitly writing what we want is a good idea. Related: the different behavior of |
The lock file would only need to be updated if Cargo.toml changed, a new
release doesn't mean the lock file _needs_ to be updated, just that it
_could_ be updated.
…On Sat, Oct 10, 2020 at 7:09 PM Miguel Ojeda ***@***.***> wrote:
So the man page says:
If the lock file ... needs to be updated, Cargo will exit with an error.
Therefore, if a dependency gets updated and we haven't pinned them, Cargo
will want to update it, which means an error, no?
Then there is --frozen. From the man page, it looks like it avoids using
the network to see if new versions are available, but from the wording I'd
assume it can still check the local index and complain. Then there is
--offline, which it is not clear to me from the man page what is the
exact interaction with the other flags.
What we want is that code *never* changes, for any reason whatsoever,
unless someone explicitly changes it. Regardless of Cargo's flags, it
sounds like explicitly writing what we want is a good idea.
Related: the different behavior of cargo install vs. cargo build w.r.t.
the lockfile.
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<#14 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/AAAAGBAGIEHQVQNI5EPIH7LSKDSRDANCNFSM4RTJWQNA>
.
--
All that is necessary for evil to succeed is for good people to do nothing.
|
Ah, so by "out of date" the manpage means w.r.t. to the |
Alright, then yeah, my main concern is gone. Since we don't use In that case, well, I don't mind one way or the other. I always prefer to be explicit on dependencies management, but I don't like repeated information either; and it is not how usual Rust projects handle dependencies with Cargo; so we can close this. |
I'm trying call bindgen as an executable and not from the build.rs. As this would us only let with bitflags as dependency, which does not have any dependencies. |
How about shelling out to it in `build.rs`?
…On Sun, Oct 11, 2020 at 11:27 AM Finn Behrens ***@***.***> wrote:
I'm trying call bindgen as an executable and not from the build.rs. As
this would us only let with bitflags as dependency, which does not have any
dependencies.
But currently, I'm not sure where in the makefile to call bindgen
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<#14 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/AAAAGBFYJC4UMKFWG7QOXEDSKHFFFANCNFSM4RTJWQNA>
.
--
All that is necessary for evil to succeed is for good people to do nothing.
|
As I would like to ditch cargo, the is no build.rs left |
FWIW, I'm opposed to dropping cargo, it's a useful build system, and if we
drop it we have to reimplement a bunch of it's behaviors ourselves.
…On Sun, Oct 11, 2020 at 11:49 AM Finn Behrens ***@***.***> wrote:
How about shelling out to it in build.rs?
As I would like to ditch cargo, the is no build.rs left
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<#14 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/AAAAGBC4SRNQQW5Z365JJLDSKHH2FANCNFSM4RTJWQNA>
.
--
All that is necessary for evil to succeed is for good people to do nothing.
|
We only have one dependency. This is quite easy to implement in plain rustc. Also without cargo, I would just save bitflags in tree, that avoids any network traffic. |
It's not just about external dependencies, it's also local deps, between
crates that are within tree.
…On Sun, Oct 11, 2020 at 12:04 PM Finn Behrens ***@***.***> wrote:
We only have one dependency. This is quite easy to implement in plain
rustc. Also without cargo, I would just save bitflags in tree, that avoids
any network traffic.
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<#14 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/AAAAGBCLOIHX5W4MT7EE363SKHJQ7ANCNFSM4RTJWQNA>
.
--
All that is necessary for evil to succeed is for good people to do nothing.
|
Ok, I understand, but don't like that argument. What about vendoring bitflags in tree and only using bingen as executable, to make building easier? |
My personal opinion is that I'm skeptical, I think the developer-UX will be
worse. But if we can get that really all working, and folks think it'll
make this easier to upstream, then I'm open to it.
…On Sun, Oct 11, 2020 at 12:14 PM Finn Behrens ***@***.***> wrote:
Ok, I understand, but don't like that argument.
What about vendoring bitflags in tree and only using bingen as executable,
to make building easier?
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<#14 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/AAAAGBEFUD5L7NQWXBEJX7LSKHKWNANCNFSM4RTJWQNA>
.
--
All that is necessary for evil to succeed is for good people to do nothing.
|
The Cargo-or-not discussion will be forever a hot topic until we get this merged one way or the other. @nickdesaulniers and I started testing the waters without it, and then in a couple of calls we had before Plumbers we (see #1 for the list of people) discussed testing Cargo. See also #4 for some points I wrote about Cargo when I did the initial integration. At the moment, the main reason/advantage for it is that it contains the knowledge of how to build
For communication purposes, we will have a mailing list as is usual for kernel stuff (request still pending). For real-time discussion I wanted to have an informal call from time to time like the ones we had for Plumbers. I think it is about a good time to have one since there is a fair amount of bits to discuss after this initial phase. I can send a poll for e.g. next weekend. |
Let's close this one. The bindgen discussion follows in #33, the rest perhaps in the ML! :-) |
…s metrics" test Linux 5.9 introduced perf test case "Parse and process metrics" and on s390 this test case always dumps core: [root@t35lp67 perf]# ./perf test -vvvv -F 67 67: Parse and process metrics : --- start --- metric expr inst_retired.any / cpu_clk_unhalted.thread for IPC parsing metric: inst_retired.any / cpu_clk_unhalted.thread Segmentation fault (core dumped) [root@t35lp67 perf]# I debugged this core dump and gdb shows this call chain: (gdb) where #0 0x000003ffabc3192a in __strnlen_c_1 () from /lib64/libc.so.6 #1 0x000003ffabc293de in strcasestr () from /lib64/libc.so.6 #2 0x0000000001102ba2 in match_metric(list=0x1e6ea20 "inst_retired.any", n=<optimized out>) at util/metricgroup.c:368 #3 find_metric (map=<optimized out>, map=<optimized out>, metric=0x1e6ea20 "inst_retired.any") at util/metricgroup.c:765 #4 __resolve_metric (ids=0x0, map=<optimized out>, metric_list=0x0, metric_no_group=<optimized out>, m=<optimized out>) at util/metricgroup.c:844 #5 resolve_metric (ids=0x0, map=0x0, metric_list=0x0, metric_no_group=<optimized out>) at util/metricgroup.c:881 #6 metricgroup__add_metric (metric=<optimized out>, metric_no_group=metric_no_group@entry=false, events=<optimized out>, events@entry=0x3ffd84fb878, metric_list=0x0, metric_list@entry=0x3ffd84fb868, map=0x0) at util/metricgroup.c:943 #7 0x00000000011034ae in metricgroup__add_metric_list (map=0x13f9828 <map>, metric_list=0x3ffd84fb868, events=0x3ffd84fb878, metric_no_group=<optimized out>, list=<optimized out>) at util/metricgroup.c:988 #8 parse_groups (perf_evlist=perf_evlist@entry=0x1e70260, str=str@entry=0x12f34b2 "IPC", metric_no_group=<optimized out>, metric_no_merge=<optimized out>, fake_pmu=fake_pmu@entry=0x1462f18 <perf_pmu.fake>, metric_events=0x3ffd84fba58, map=0x1) at util/metricgroup.c:1040 #9 0x0000000001103eb2 in metricgroup__parse_groups_test( evlist=evlist@entry=0x1e70260, map=map@entry=0x13f9828 <map>, str=str@entry=0x12f34b2 "IPC", metric_no_group=metric_no_group@entry=false, metric_no_merge=metric_no_merge@entry=false, metric_events=0x3ffd84fba58) at util/metricgroup.c:1082 #10 0x00000000010c84d8 in __compute_metric (ratio2=0x0, name2=0x0, ratio1=<synthetic pointer>, name1=0x12f34b2 "IPC", vals=0x3ffd84fbad8, name=0x12f34b2 "IPC") at tests/parse-metric.c:159 #11 compute_metric (ratio=<synthetic pointer>, vals=0x3ffd84fbad8, name=0x12f34b2 "IPC") at tests/parse-metric.c:189 #12 test_ipc () at tests/parse-metric.c:208 ..... ..... omitted many more lines This test case was added with commit 218ca91 ("perf tests: Add parse metric test for frontend metric"). When I compile with make DEBUG=y it works fine and I do not get a core dump. It turned out that the above listed function call chain worked on a struct pmu_event array which requires a trailing element with zeroes which was missing. The marco map_for_each_event() loops over that array tests for members metric_expr/metric_name/metric_group being non-NULL. Adding this element fixes the issue. Output after: [root@t35lp46 perf]# ./perf test 67 67: Parse and process metrics : Ok [root@t35lp46 perf]# Committer notes: As Ian remarks, this is not s390 specific: <quote Ian> This also shows up with address sanitizer on all architectures (perhaps change the patch title) and perhaps add a "Fixes: <commit>" tag. ================================================================= ==4718==ERROR: AddressSanitizer: global-buffer-overflow on address 0x55c93b4d59e8 at pc 0x55c93a1541e2 bp 0x7ffd24327c60 sp 0x7ffd24327c58 READ of size 8 at 0x55c93b4d59e8 thread T0 #0 0x55c93a1541e1 in find_metric tools/perf/util/metricgroup.c:764:2 #1 0x55c93a153e6c in __resolve_metric tools/perf/util/metricgroup.c:844:9 #2 0x55c93a152f18 in resolve_metric tools/perf/util/metricgroup.c:881:9 #3 0x55c93a1528db in metricgroup__add_metric tools/perf/util/metricgroup.c:943:9 #4 0x55c93a151996 in metricgroup__add_metric_list tools/perf/util/metricgroup.c:988:9 #5 0x55c93a1511b9 in parse_groups tools/perf/util/metricgroup.c:1040:8 #6 0x55c93a1513e1 in metricgroup__parse_groups_test tools/perf/util/metricgroup.c:1082:9 #7 0x55c93a0108ae in __compute_metric tools/perf/tests/parse-metric.c:159:8 #8 0x55c93a010744 in compute_metric tools/perf/tests/parse-metric.c:189:9 #9 0x55c93a00f5ee in test_ipc tools/perf/tests/parse-metric.c:208:2 #10 0x55c93a00f1e8 in test__parse_metric tools/perf/tests/parse-metric.c:345:2 #11 0x55c939fd7202 in run_test tools/perf/tests/builtin-test.c:410:9 #12 0x55c939fd6736 in test_and_print tools/perf/tests/builtin-test.c:440:9 #13 0x55c939fd58c3 in __cmd_test tools/perf/tests/builtin-test.c:661:4 #14 0x55c939fd4e02 in cmd_test tools/perf/tests/builtin-test.c:807:9 #15 0x55c939e4763d in run_builtin tools/perf/perf.c:313:11 #16 0x55c939e46475 in handle_internal_command tools/perf/perf.c:365:8 #17 0x55c939e4737e in run_argv tools/perf/perf.c:409:2 #18 0x55c939e45f7e in main tools/perf/perf.c:539:3 0x55c93b4d59e8 is located 0 bytes to the right of global variable 'pme_test' defined in 'tools/perf/tests/parse-metric.c:17:25' (0x55c93b4d54a0) of size 1352 SUMMARY: AddressSanitizer: global-buffer-overflow tools/perf/util/metricgroup.c:764:2 in find_metric Shadow bytes around the buggy address: 0x0ab9a7692ae0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0ab9a7692af0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0ab9a7692b00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0ab9a7692b10: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0ab9a7692b20: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 =>0x0ab9a7692b30: 00 00 00 00 00 00 00 00 00 00 00 00 00[f9]f9 f9 0x0ab9a7692b40: f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 0x0ab9a7692b50: f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 0x0ab9a7692b60: f9 f9 f9 f9 f9 f9 f9 f9 00 00 00 00 00 00 00 00 0x0ab9a7692b70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0ab9a7692b80: f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 Shadow byte legend (one shadow byte represents 8 application bytes): Addressable: 00 Partially addressable: 01 02 03 04 05 06 07 Heap left redzone: fa Freed heap region: fd Stack left redzone: f1 Stack mid redzone: f2 Stack right redzone: f3 Stack after return: f5 Stack use after scope: f8 Global redzone: f9 Global init order: f6 Poisoned by user: f7 Container overflow: fc Array cookie: ac Intra object redzone: bb ASan internal: fe Left alloca redzone: ca Right alloca redzone: cb Shadow gap: cc </quote> I'm also adding the missing "Fixes" tag and setting just .name to NULL, as doing it that way is more compact (the compiler will zero out everything else) and the table iterators look for .name being NULL as the sentinel marking the end of the table. Fixes: 0a507af ("perf tests: Add parse metric test for ipc metric") Signed-off-by: Thomas Richter <[email protected]> Reviewed-by: Sumanth Korikkar <[email protected]> Acked-by: Ian Rogers <[email protected]> Cc: Heiko Carstens <[email protected]> Cc: Jiri Olsa <[email protected]> Cc: Namhyung Kim <[email protected]> Cc: Sven Schnelle <[email protected]> Cc: Vasily Gorbik <[email protected]> Link: http://lore.kernel.org/lkml/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
The evsel->unit borrows a pointer of pmu event or alias instead of owns a string. But tool event (duration_time) passes a result of strdup() caused a leak. It was found by ASAN during metric test: Direct leak of 210 byte(s) in 70 object(s) allocated from: #0 0x7fe366fca0b5 in strdup (/lib/x86_64-linux-gnu/libasan.so.5+0x920b5) #1 0x559fbbcc6ea3 in add_event_tool util/parse-events.c:414 #2 0x559fbbcc6ea3 in parse_events_add_tool util/parse-events.c:1414 #3 0x559fbbd8474d in parse_events_parse util/parse-events.y:439 #4 0x559fbbcc95da in parse_events__scanner util/parse-events.c:2096 #5 0x559fbbcc95da in __parse_events util/parse-events.c:2141 #6 0x559fbbc28555 in check_parse_id tests/pmu-events.c:406 #7 0x559fbbc28555 in check_parse_id tests/pmu-events.c:393 #8 0x559fbbc28555 in check_parse_cpu tests/pmu-events.c:415 #9 0x559fbbc28555 in test_parsing tests/pmu-events.c:498 #10 0x559fbbc0109b in run_test tests/builtin-test.c:410 #11 0x559fbbc0109b in test_and_print tests/builtin-test.c:440 #12 0x559fbbc03e69 in __cmd_test tests/builtin-test.c:695 #13 0x559fbbc03e69 in cmd_test tests/builtin-test.c:807 #14 0x559fbbc691f4 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:312 #15 0x559fbbb071a8 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:364 #16 0x559fbbb071a8 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:408 #17 0x559fbbb071a8 in main /home/namhyung/project/linux/tools/perf/perf.c:538 #18 0x7fe366b68cc9 in __libc_start_main ../csu/libc-start.c:308 Fixes: f0fbb11 ("perf stat: Implement duration_time as a proper event") Signed-off-by: Namhyung Kim <[email protected]> Acked-by: Jiri Olsa <[email protected]> Cc: Alexander Shishkin <[email protected]> Cc: Andi Kleen <[email protected]> Cc: Ian Rogers <[email protected]> Cc: Mark Rutland <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Stephane Eranian <[email protected]> Link: http://lore.kernel.org/lkml/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
The test_generic_metric() missed to release entries in the pctx. Asan reported following leak (and more): Direct leak of 128 byte(s) in 1 object(s) allocated from: #0 0x7f4c9396980e in calloc (/lib/x86_64-linux-gnu/libasan.so.5+0x10780e) #1 0x55f7e748cc14 in hashmap_grow (/home/namhyung/project/linux/tools/perf/perf+0x90cc14) #2 0x55f7e748d497 in hashmap__insert (/home/namhyung/project/linux/tools/perf/perf+0x90d497) #3 0x55f7e7341667 in hashmap__set /home/namhyung/project/linux/tools/perf/util/hashmap.h:111 #4 0x55f7e7341667 in expr__add_ref util/expr.c:120 #5 0x55f7e7292436 in prepare_metric util/stat-shadow.c:783 #6 0x55f7e729556d in test_generic_metric util/stat-shadow.c:858 #7 0x55f7e712390b in compute_single tests/parse-metric.c:128 #8 0x55f7e712390b in __compute_metric tests/parse-metric.c:180 #9 0x55f7e712446d in compute_metric tests/parse-metric.c:196 #10 0x55f7e712446d in test_dcache_l2 tests/parse-metric.c:295 #11 0x55f7e712446d in test__parse_metric tests/parse-metric.c:355 #12 0x55f7e70be09b in run_test tests/builtin-test.c:410 #13 0x55f7e70be09b in test_and_print tests/builtin-test.c:440 #14 0x55f7e70c101a in __cmd_test tests/builtin-test.c:661 #15 0x55f7e70c101a in cmd_test tests/builtin-test.c:807 #16 0x55f7e7126214 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:312 #17 0x55f7e6fc41a8 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:364 #18 0x55f7e6fc41a8 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:408 #19 0x55f7e6fc41a8 in main /home/namhyung/project/linux/tools/perf/perf.c:538 #20 0x7f4c93492cc9 in __libc_start_main ../csu/libc-start.c:308 Fixes: 6d432c4 ("perf tools: Add test_generic_metric function") Signed-off-by: Namhyung Kim <[email protected]> Acked-by: Jiri Olsa <[email protected]> Cc: Alexander Shishkin <[email protected]> Cc: Andi Kleen <[email protected]> Cc: Ian Rogers <[email protected]> Cc: Mark Rutland <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Stephane Eranian <[email protected]> Link: http://lore.kernel.org/lkml/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
The metricgroup__add_metric() can find multiple match for a metric group and it's possible to fail. Also it can fail in the middle like in resolve_metric() even for single metric. In those cases, the intermediate list and ids will be leaked like: Direct leak of 3 byte(s) in 1 object(s) allocated from: #0 0x7f4c938f40b5 in strdup (/lib/x86_64-linux-gnu/libasan.so.5+0x920b5) #1 0x55f7e71c1bef in __add_metric util/metricgroup.c:683 #2 0x55f7e71c31d0 in add_metric util/metricgroup.c:906 #3 0x55f7e71c3844 in metricgroup__add_metric util/metricgroup.c:940 #4 0x55f7e71c488d in metricgroup__add_metric_list util/metricgroup.c:993 #5 0x55f7e71c488d in parse_groups util/metricgroup.c:1045 #6 0x55f7e71c60a4 in metricgroup__parse_groups_test util/metricgroup.c:1087 #7 0x55f7e71235ae in __compute_metric tests/parse-metric.c:164 #8 0x55f7e7124650 in compute_metric tests/parse-metric.c:196 #9 0x55f7e7124650 in test_recursion_fail tests/parse-metric.c:318 #10 0x55f7e7124650 in test__parse_metric tests/parse-metric.c:356 #11 0x55f7e70be09b in run_test tests/builtin-test.c:410 #12 0x55f7e70be09b in test_and_print tests/builtin-test.c:440 #13 0x55f7e70c101a in __cmd_test tests/builtin-test.c:661 #14 0x55f7e70c101a in cmd_test tests/builtin-test.c:807 #15 0x55f7e7126214 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:312 #16 0x55f7e6fc41a8 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:364 #17 0x55f7e6fc41a8 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:408 #18 0x55f7e6fc41a8 in main /home/namhyung/project/linux/tools/perf/perf.c:538 #19 0x7f4c93492cc9 in __libc_start_main ../csu/libc-start.c:308 Fixes: 83de0b7 ("perf metric: Collect referenced metrics in struct metric_ref_node") Signed-off-by: Namhyung Kim <[email protected]> Acked-by: Jiri Olsa <[email protected]> Cc: Alexander Shishkin <[email protected]> Cc: Andi Kleen <[email protected]> Cc: Ian Rogers <[email protected]> Cc: Mark Rutland <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Stephane Eranian <[email protected]> Link: http://lore.kernel.org/lkml/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
The evlist has the maps with its own refcounts so we don't need to set the pointers to NULL. Otherwise following error was reported by Asan. # perf test -v 4 4: Read samples using the mmap interface : --- start --- test child forked, pid 139782 mmap size 528384B ================================================================= ==139782==ERROR: LeakSanitizer: detected memory leaks Direct leak of 40 byte(s) in 1 object(s) allocated from: #0 0x7f1f76daee8f in __interceptor_malloc ../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:145 #1 0x564ba21a0fea in cpu_map__trim_new /home/namhyung/project/linux/tools/lib/perf/cpumap.c:79 #2 0x564ba21a1a0f in perf_cpu_map__read /home/namhyung/project/linux/tools/lib/perf/cpumap.c:149 #3 0x564ba21a21cf in cpu_map__read_all_cpu_map /home/namhyung/project/linux/tools/lib/perf/cpumap.c:166 #4 0x564ba21a21cf in perf_cpu_map__new /home/namhyung/project/linux/tools/lib/perf/cpumap.c:181 #5 0x564ba1e48298 in test__basic_mmap tests/mmap-basic.c:55 #6 0x564ba1e278fb in run_test tests/builtin-test.c:428 #7 0x564ba1e278fb in test_and_print tests/builtin-test.c:458 #8 0x564ba1e29a53 in __cmd_test tests/builtin-test.c:679 #9 0x564ba1e29a53 in cmd_test tests/builtin-test.c:825 #10 0x564ba1e95cb4 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:313 #11 0x564ba1d1fa88 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:365 #12 0x564ba1d1fa88 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:409 #13 0x564ba1d1fa88 in main /home/namhyung/project/linux/tools/perf/perf.c:539 #14 0x7f1f768e4d09 in __libc_start_main ../csu/libc-start.c:308 ... test child finished with 1 ---- end ---- Read samples using the mmap interface: FAILED! failed to open shell test directory: /home/namhyung/libexec/perf-core/tests/shell Signed-off-by: Namhyung Kim <[email protected]> Acked-by: Jiri Olsa <[email protected]> Cc: Mark Rutland <[email protected]> Cc: Stephane Eranian <[email protected]> Cc: Ian Rogers <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Adrian Hunter <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Leo Yan <[email protected]> Cc: Andi Kleen <[email protected]> Cc: Alexander Shishkin <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
The evlist and the cpu/thread maps should be released together. Otherwise following error was reported by Asan. Note that this test still has memory leaks in DSOs so it still fails even after this change. I'll take a look at that too. # perf test -v 26 26: Object code reading : --- start --- test child forked, pid 154184 Looking at the vmlinux_path (8 entries long) symsrc__init: build id mismatch for vmlinux. symsrc__init: cannot get elf header. Using /proc/kcore for kernel data Using /proc/kallsyms for symbols Parsing event 'cycles' mmap size 528384B ... ================================================================= ==154184==ERROR: LeakSanitizer: detected memory leaks Direct leak of 439 byte(s) in 1 object(s) allocated from: #0 0x7fcb66e77037 in __interceptor_calloc ../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:154 #1 0x55ad9b7e821e in dso__new_id util/dso.c:1256 #2 0x55ad9b8cfd4a in __machine__addnew_vdso util/vdso.c:132 #3 0x55ad9b8cfd4a in machine__findnew_vdso util/vdso.c:347 #4 0x55ad9b845b7e in map__new util/map.c:176 #5 0x55ad9b8415a2 in machine__process_mmap2_event util/machine.c:1787 #6 0x55ad9b8fab16 in perf_tool__process_synth_event util/synthetic-events.c:64 #7 0x55ad9b8fab16 in perf_event__synthesize_mmap_events util/synthetic-events.c:499 #8 0x55ad9b8fbfdf in __event__synthesize_thread util/synthetic-events.c:741 #9 0x55ad9b8ff3e3 in perf_event__synthesize_thread_map util/synthetic-events.c:833 #10 0x55ad9b738585 in do_test_code_reading tests/code-reading.c:608 #11 0x55ad9b73b25d in test__code_reading tests/code-reading.c:722 #12 0x55ad9b6f28fb in run_test tests/builtin-test.c:428 #13 0x55ad9b6f28fb in test_and_print tests/builtin-test.c:458 #14 0x55ad9b6f4a53 in __cmd_test tests/builtin-test.c:679 #15 0x55ad9b6f4a53 in cmd_test tests/builtin-test.c:825 #16 0x55ad9b760cc4 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:313 #17 0x55ad9b5eaa88 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:365 #18 0x55ad9b5eaa88 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:409 #19 0x55ad9b5eaa88 in main /home/namhyung/project/linux/tools/perf/perf.c:539 #20 0x7fcb669acd09 in __libc_start_main ../csu/libc-start.c:308 ... SUMMARY: AddressSanitizer: 471 byte(s) leaked in 2 allocation(s). test child finished with 1 ---- end ---- Object code reading: FAILED! Signed-off-by: Namhyung Kim <[email protected]> Acked-by: Jiri Olsa <[email protected]> Cc: Adrian Hunter <[email protected]> Cc: Alexander Shishkin <[email protected]> Cc: Andi Kleen <[email protected]> Cc: Ian Rogers <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Leo Yan <[email protected]> Cc: Mark Rutland <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Stephane Eranian <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
The evlist and the cpu/thread maps should be released together. Otherwise following error was reported by Asan. $ perf test -v 28 28: Use a dummy software event to keep tracking: --- start --- test child forked, pid 156810 mmap size 528384B ================================================================= ==156810==ERROR: LeakSanitizer: detected memory leaks Direct leak of 40 byte(s) in 1 object(s) allocated from: #0 0x7f637d2bce8f in __interceptor_malloc ../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:145 #1 0x55cc6295cffa in cpu_map__trim_new /home/namhyung/project/linux/tools/lib/perf/cpumap.c:79 #2 0x55cc6295da1f in perf_cpu_map__read /home/namhyung/project/linux/tools/lib/perf/cpumap.c:149 #3 0x55cc6295e1df in cpu_map__read_all_cpu_map /home/namhyung/project/linux/tools/lib/perf/cpumap.c:166 #4 0x55cc6295e1df in perf_cpu_map__new /home/namhyung/project/linux/tools/lib/perf/cpumap.c:181 #5 0x55cc626287cf in test__keep_tracking tests/keep-tracking.c:84 #6 0x55cc625e38fb in run_test tests/builtin-test.c:428 #7 0x55cc625e38fb in test_and_print tests/builtin-test.c:458 #8 0x55cc625e5a53 in __cmd_test tests/builtin-test.c:679 #9 0x55cc625e5a53 in cmd_test tests/builtin-test.c:825 #10 0x55cc62651cc4 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:313 #11 0x55cc624dba88 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:365 #12 0x55cc624dba88 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:409 #13 0x55cc624dba88 in main /home/namhyung/project/linux/tools/perf/perf.c:539 #14 0x7f637cdf2d09 in __libc_start_main ../csu/libc-start.c:308 SUMMARY: AddressSanitizer: 72 byte(s) leaked in 2 allocation(s). test child finished with 1 ---- end ---- Use a dummy software event to keep tracking: FAILED! Signed-off-by: Namhyung Kim <[email protected]> Acked-by: Jiri Olsa <[email protected]> Cc: Adrian Hunter <[email protected]> Cc: Alexander Shishkin <[email protected]> Cc: Andi Kleen <[email protected]> Cc: Ian Rogers <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Leo Yan <[email protected]> Cc: Mark Rutland <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Stephane Eranian <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
The evlist and cpu/thread maps should be released together. Otherwise the following error was reported by Asan. $ perf test -v 35 35: Track with sched_switch : --- start --- test child forked, pid 159287 Using CPUID GenuineIntel-6-8E-C mmap size 528384B 1295 events recorded ================================================================= ==159287==ERROR: LeakSanitizer: detected memory leaks Direct leak of 40 byte(s) in 1 object(s) allocated from: #0 0x7fa28d9a2e8f in __interceptor_malloc ../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:145 #1 0x5652f5a5affa in cpu_map__trim_new /home/namhyung/project/linux/tools/lib/perf/cpumap.c:79 #2 0x5652f5a5ba1f in perf_cpu_map__read /home/namhyung/project/linux/tools/lib/perf/cpumap.c:149 #3 0x5652f5a5c1df in cpu_map__read_all_cpu_map /home/namhyung/project/linux/tools/lib/perf/cpumap.c:166 #4 0x5652f5a5c1df in perf_cpu_map__new /home/namhyung/project/linux/tools/lib/perf/cpumap.c:181 #5 0x5652f5723bbf in test__switch_tracking tests/switch-tracking.c:350 #6 0x5652f56e18fb in run_test tests/builtin-test.c:428 #7 0x5652f56e18fb in test_and_print tests/builtin-test.c:458 #8 0x5652f56e3a53 in __cmd_test tests/builtin-test.c:679 #9 0x5652f56e3a53 in cmd_test tests/builtin-test.c:825 #10 0x5652f574fcc4 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:313 #11 0x5652f55d9a88 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:365 #12 0x5652f55d9a88 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:409 #13 0x5652f55d9a88 in main /home/namhyung/project/linux/tools/perf/perf.c:539 #14 0x7fa28d4d8d09 in __libc_start_main ../csu/libc-start.c:308 SUMMARY: AddressSanitizer: 72 byte(s) leaked in 2 allocation(s). test child finished with 1 ---- end ---- Track with sched_switch: FAILED! Signed-off-by: Namhyung Kim <[email protected]> Acked-by: Jiri Olsa <[email protected]> Cc: Adrian Hunter <[email protected]> Cc: Alexander Shishkin <[email protected]> Cc: Andi Kleen <[email protected]> Cc: Ian Rogers <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Leo Yan <[email protected]> Cc: Mark Rutland <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Stephane Eranian <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
It should release the maps at the end. $ perf test -v 71 71: Convert perf time to TSC : --- start --- test child forked, pid 178744 mmap size 528384B 1st event perf time 59207256505278 tsc 13187166645142 rdtsc time 59207256542151 tsc 13187166723020 2nd event perf time 59207256543749 tsc 13187166726393 ================================================================= ==178744==ERROR: LeakSanitizer: detected memory leaks Direct leak of 40 byte(s) in 1 object(s) allocated from: #0 0x7faf601f9e8f in __interceptor_malloc ../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:145 #1 0x55b620cfc00a in cpu_map__trim_new /home/namhyung/project/linux/tools/lib/perf/cpumap.c:79 #2 0x55b620cfca2f in perf_cpu_map__read /home/namhyung/project/linux/tools/lib/perf/cpumap.c:149 #3 0x55b620cfd1ef in cpu_map__read_all_cpu_map /home/namhyung/project/linux/tools/lib/perf/cpumap.c:166 #4 0x55b620cfd1ef in perf_cpu_map__new /home/namhyung/project/linux/tools/lib/perf/cpumap.c:181 #5 0x55b6209ef1b2 in test__perf_time_to_tsc tests/perf-time-to-tsc.c:73 #6 0x55b6209828fb in run_test tests/builtin-test.c:428 #7 0x55b6209828fb in test_and_print tests/builtin-test.c:458 #8 0x55b620984a53 in __cmd_test tests/builtin-test.c:679 #9 0x55b620984a53 in cmd_test tests/builtin-test.c:825 #10 0x55b6209f0cd4 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:313 #11 0x55b62087aa88 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:365 #12 0x55b62087aa88 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:409 #13 0x55b62087aa88 in main /home/namhyung/project/linux/tools/perf/perf.c:539 #14 0x7faf5fd2fd09 in __libc_start_main ../csu/libc-start.c:308 SUMMARY: AddressSanitizer: 72 byte(s) leaked in 2 allocation(s). test child finished with 1 ---- end ---- Convert perf time to TSC: FAILED! Signed-off-by: Namhyung Kim <[email protected]> Acked-by: Jiri Olsa <[email protected]> Cc: Adrian Hunter <[email protected]> Cc: Alexander Shishkin <[email protected]> Cc: Andi Kleen <[email protected]> Cc: Ian Rogers <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Leo Yan <[email protected]> Cc: Mark Rutland <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Stephane Eranian <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
I got a segfault when using -r option with event groups. The option makes it run the workload multiple times and it will reuse the evlist and evsel for each run. While most of resources are allocated and freed properly, the id hash in the evlist was not and it resulted in the bug. You can see it with the address sanitizer like below: $ perf stat -r 100 -e '{cycles,instructions}' true ================================================================= ==693052==ERROR: AddressSanitizer: heap-use-after-free on address 0x6080000003d0 at pc 0x558c57732835 bp 0x7fff1526adb0 sp 0x7fff1526ada8 WRITE of size 8 at 0x6080000003d0 thread T0 #0 0x558c57732834 in hlist_add_head /home/namhyung/project/linux/tools/include/linux/list.h:644 #1 0x558c57732834 in perf_evlist__id_hash /home/namhyung/project/linux/tools/lib/perf/evlist.c:237 #2 0x558c57732834 in perf_evlist__id_add /home/namhyung/project/linux/tools/lib/perf/evlist.c:244 #3 0x558c57732834 in perf_evlist__id_add_fd /home/namhyung/project/linux/tools/lib/perf/evlist.c:285 #4 0x558c5747733e in store_evsel_ids util/evsel.c:2765 #5 0x558c5747733e in evsel__store_ids util/evsel.c:2782 #6 0x558c5730b717 in __run_perf_stat /home/namhyung/project/linux/tools/perf/builtin-stat.c:895 #7 0x558c5730b717 in run_perf_stat /home/namhyung/project/linux/tools/perf/builtin-stat.c:1014 #8 0x558c5730b717 in cmd_stat /home/namhyung/project/linux/tools/perf/builtin-stat.c:2446 #9 0x558c57427c24 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:313 #10 0x558c572b1a48 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:365 #11 0x558c572b1a48 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:409 #12 0x558c572b1a48 in main /home/namhyung/project/linux/tools/perf/perf.c:539 #13 0x7fcadb9f7d09 in __libc_start_main ../csu/libc-start.c:308 #14 0x558c572b60f9 in _start (/home/namhyung/project/linux/tools/perf/perf+0x45d0f9) Actually the nodes in the hash table are struct perf_stream_id and they were freed in the previous run. Fix it by resetting the hash. Signed-off-by: Namhyung Kim <[email protected]> Acked-by: Jiri Olsa <[email protected]> Cc: Alexander Shishkin <[email protected]> Cc: Arnaldo Carvalho de Melo <[email protected]> Cc: Ian Rogers <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Mark Rutland <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Stephane Eranian <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
When the kernel mapping was moved the last 2GB of the address space, (__va(PFN_PHYS(max_low_pfn))) is much smaller than the .data section start address, the last set_memory_nx() in protect_kernel_text_data() will fail, thus the .data section is still mapped as W+X. This results in below W+X mapping waring at boot. Fix it by passing the correct .data section page num to the set_memory_nx(). [ 0.396516] ------------[ cut here ]------------ [ 0.396889] riscv/mm: Found insecure W+X mapping at address (____ptrval____)/0xffffffff80c00000 [ 0.398347] WARNING: CPU: 0 PID: 1 at arch/riscv/mm/ptdump.c:258 note_page+0x244/0x24a [ 0.398964] Modules linked in: [ 0.399459] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.13.0-rc1+ Rust-for-Linux#14 [ 0.400003] Hardware name: riscv-virtio,qemu (DT) [ 0.400591] epc : note_page+0x244/0x24a [ 0.401368] ra : note_page+0x244/0x24a [ 0.401772] epc : ffffffff80007c86 ra : ffffffff80007c86 sp : ffffffe000e7bc30 [ 0.402304] gp : ffffffff80caae88 tp : ffffffe000e70000 t0 : ffffffff80cb80cf [ 0.402800] t1 : ffffffff80cb80c0 t2 : 0000000000000000 s0 : ffffffe000e7bc80 [ 0.403310] s1 : ffffffe000e7bde8 a0 : 0000000000000053 a1 : ffffffff80c83ff0 [ 0.403805] a2 : 0000000000000010 a3 : 0000000000000000 a4 : 6c7e7a5137233100 [ 0.404298] a5 : 6c7e7a5137233100 a6 : 0000000000000030 a7 : ffffffffffffffff [ 0.404849] s2 : ffffffff80e00000 s3 : 0000000040000000 s4 : 0000000000000000 [ 0.405393] s5 : 0000000000000000 s6 : 0000000000000003 s7 : ffffffe000e7bd48 [ 0.405935] s8 : ffffffff81000000 s9 : ffffffffc0000000 s10: ffffffe000e7bd48 [ 0.406476] s11: 0000000000001000 t3 : 0000000000000072 t4 : ffffffffffffffff [ 0.407016] t5 : 0000000000000002 t6 : ffffffe000e7b978 [ 0.407435] status: 0000000000000120 badaddr: 0000000000000000 cause: 0000000000000003 [ 0.408052] Call Trace: [ 0.408343] [<ffffffff80007c86>] note_page+0x244/0x24a [ 0.408855] [<ffffffff8010c5a6>] ptdump_hole+0x14/0x1e [ 0.409263] [<ffffffff800f65c6>] walk_pgd_range+0x2a0/0x376 [ 0.409690] [<ffffffff800f6828>] walk_page_range_novma+0x4e/0x6e [ 0.410146] [<ffffffff8010c5f8>] ptdump_walk_pgd+0x48/0x78 [ 0.410570] [<ffffffff80007d66>] ptdump_check_wx+0xb4/0xf8 [ 0.410990] [<ffffffff80006738>] mark_rodata_ro+0x26/0x2e [ 0.411407] [<ffffffff8031961e>] kernel_init+0x44/0x108 [ 0.411814] [<ffffffff80002312>] ret_from_exception+0x0/0xc [ 0.412309] ---[ end trace 7ec3459f2547ea83 ]--- [ 0.413141] Checked W+X mappings: failed, 512 W+X pages found Fixes: 2bfc6cd ("riscv: Move kernel mapping outside of linear mapping") Signed-off-by: Jisheng Zhang <[email protected]> Signed-off-by: Palmer Dabbelt <[email protected]>
It's later supposed to be either a correct address or NULL. Without the initialization, it may contain an undefined value which results in the following segmentation fault: # perf top --sort comm -g --ignore-callees=do_idle terminates with: #0 0x00007ffff56b7685 in __strlen_avx2 () from /lib64/libc.so.6 Rust-for-Linux#1 0x00007ffff55e3802 in strdup () from /lib64/libc.so.6 Rust-for-Linux#2 0x00005555558cb139 in hist_entry__init (callchain_size=<optimized out>, sample_self=true, template=0x7fffde7fb110, he=0x7fffd801c250) at util/hist.c:489 Rust-for-Linux#3 hist_entry__new (template=template@entry=0x7fffde7fb110, sample_self=sample_self@entry=true) at util/hist.c:564 Rust-for-Linux#4 0x00005555558cb4ba in hists__findnew_entry (hists=hists@entry=0x5555561d9e38, entry=entry@entry=0x7fffde7fb110, al=al@entry=0x7fffde7fb420, sample_self=sample_self@entry=true) at util/hist.c:657 Rust-for-Linux#5 0x00005555558cba1b in __hists__add_entry (hists=hists@entry=0x5555561d9e38, al=0x7fffde7fb420, sym_parent=<optimized out>, bi=bi@entry=0x0, mi=mi@entry=0x0, sample=sample@entry=0x7fffde7fb4b0, sample_self=true, ops=0x0, block_info=0x0) at util/hist.c:288 Rust-for-Linux#6 0x00005555558cbb70 in hists__add_entry (sample_self=true, sample=0x7fffde7fb4b0, mi=0x0, bi=0x0, sym_parent=<optimized out>, al=<optimized out>, hists=0x5555561d9e38) at util/hist.c:1056 Rust-for-Linux#7 iter_add_single_cumulative_entry (iter=0x7fffde7fb460, al=<optimized out>) at util/hist.c:1056 Rust-for-Linux#8 0x00005555558cc8a4 in hist_entry_iter__add (iter=iter@entry=0x7fffde7fb460, al=al@entry=0x7fffde7fb420, max_stack_depth=<optimized out>, arg=arg@entry=0x7fffffff7db0) at util/hist.c:1231 Rust-for-Linux#9 0x00005555557cdc9a in perf_event__process_sample (machine=<optimized out>, sample=0x7fffde7fb4b0, evsel=<optimized out>, event=<optimized out>, tool=0x7fffffff7db0) at builtin-top.c:842 Rust-for-Linux#10 deliver_event (qe=<optimized out>, qevent=<optimized out>) at builtin-top.c:1202 Rust-for-Linux#11 0x00005555558a9318 in do_flush (show_progress=false, oe=0x7fffffff80e0) at util/ordered-events.c:244 Rust-for-Linux#12 __ordered_events__flush (oe=oe@entry=0x7fffffff80e0, how=how@entry=OE_FLUSH__TOP, timestamp=timestamp@entry=0) at util/ordered-events.c:323 Rust-for-Linux#13 0x00005555558a9789 in __ordered_events__flush (timestamp=<optimized out>, how=<optimized out>, oe=<optimized out>) at util/ordered-events.c:339 Rust-for-Linux#14 ordered_events__flush (how=OE_FLUSH__TOP, oe=0x7fffffff80e0) at util/ordered-events.c:341 Rust-for-Linux#15 ordered_events__flush (oe=oe@entry=0x7fffffff80e0, how=how@entry=OE_FLUSH__TOP) at util/ordered-events.c:339 Rust-for-Linux#16 0x00005555557cd631 in process_thread (arg=0x7fffffff7db0) at builtin-top.c:1114 Rust-for-Linux#17 0x00007ffff7bb817a in start_thread () from /lib64/libpthread.so.0 Rust-for-Linux#18 0x00007ffff5656dc3 in clone () from /lib64/libc.so.6 If you look at the frame Rust-for-Linux#2, the code is: 488 if (he->srcline) { 489 he->srcline = strdup(he->srcline); 490 if (he->srcline == NULL) 491 goto err_rawdata; 492 } If he->srcline is not NULL (it is not NULL if it is uninitialized rubbish), it gets strdupped and strdupping a rubbish random string causes the problem. Also, if you look at the commit 1fb7d06, it adds the srcline property into the struct, but not initializing it everywhere needed. Committer notes: Now I see, when using --ignore-callees=do_idle we end up here at line 2189 in add_callchain_ip(): 2181 if (al.sym != NULL) { 2182 if (perf_hpp_list.parent && !*parent && 2183 symbol__match_regex(al.sym, &parent_regex)) 2184 *parent = al.sym; 2185 else if (have_ignore_callees && root_al && 2186 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2187 /* Treat this symbol as the root, 2188 forgetting its callees. */ 2189 *root_al = al; 2190 callchain_cursor_reset(cursor); 2191 } 2192 } And the al that doesn't have the ->srcline field initialized will be copied to the root_al, so then, back to: 1211 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al, 1212 int max_stack_depth, void *arg) 1213 { 1214 int err, err2; 1215 struct map *alm = NULL; 1216 1217 if (al) 1218 alm = map__get(al->map); 1219 1220 err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent, 1221 iter->evsel, al, max_stack_depth); 1222 if (err) { 1223 map__put(alm); 1224 return err; 1225 } 1226 1227 err = iter->ops->prepare_entry(iter, al); 1228 if (err) 1229 goto out; 1230 1231 err = iter->ops->add_single_entry(iter, al); 1232 if (err) 1233 goto out; 1234 That al at line 1221 is what hist_entry_iter__add() (called from sample__resolve_callchain()) saw as 'root_al', and then: iter->ops->add_single_entry(iter, al); will go on with al->srcline with a bogus value, I'll add the above sequence to the cset and apply, thanks! Signed-off-by: Michael Petlan <[email protected]> CC: Milian Wolff <[email protected]> Cc: Jiri Olsa <[email protected]> Fixes: 1fb7d06 ("perf report Use srcline from callchain for hist entries") Link: https //lore.kernel.org/r/[email protected] Reported-by: Juri Lelli <[email protected]> Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
The exit function fixes a memory leak with the src field as detected by leak sanitizer. An example of which is: Indirect leak of 25133184 byte(s) in 207 object(s) allocated from: #0 0x7f199ecfe987 in __interceptor_calloc libsanitizer/asan/asan_malloc_linux.cpp:154 Rust-for-Linux#1 0x55defe638224 in annotated_source__alloc_histograms util/annotate.c:803 Rust-for-Linux#2 0x55defe6397e4 in symbol__hists util/annotate.c:952 Rust-for-Linux#3 0x55defe639908 in symbol__inc_addr_samples util/annotate.c:968 Rust-for-Linux#4 0x55defe63aa29 in hist_entry__inc_addr_samples util/annotate.c:1119 Rust-for-Linux#5 0x55defe499a79 in hist_iter__report_callback tools/perf/builtin-report.c:182 Rust-for-Linux#6 0x55defe7a859d in hist_entry_iter__add util/hist.c:1236 Rust-for-Linux#7 0x55defe49aa63 in process_sample_event tools/perf/builtin-report.c:315 Rust-for-Linux#8 0x55defe731bc8 in evlist__deliver_sample util/session.c:1473 Rust-for-Linux#9 0x55defe731e38 in machines__deliver_event util/session.c:1510 Rust-for-Linux#10 0x55defe732a23 in perf_session__deliver_event util/session.c:1590 Rust-for-Linux#11 0x55defe72951e in ordered_events__deliver_event util/session.c:183 Rust-for-Linux#12 0x55defe740082 in do_flush util/ordered-events.c:244 Rust-for-Linux#13 0x55defe7407cb in __ordered_events__flush util/ordered-events.c:323 Rust-for-Linux#14 0x55defe740a61 in ordered_events__flush util/ordered-events.c:341 Rust-for-Linux#15 0x55defe73837f in __perf_session__process_events util/session.c:2390 Rust-for-Linux#16 0x55defe7385ff in perf_session__process_events util/session.c:2420 ... Signed-off-by: Ian Rogers <[email protected]> Acked-by: Namhyung Kim <[email protected]> Cc: Alexander Shishkin <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: James Clark <[email protected]> Cc: Jiri Olsa <[email protected]> Cc: Kajol Jain <[email protected]> Cc: Mark Rutland <[email protected]> Cc: Martin Liška <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Stephane Eranian <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
In `igbvf_probe`, if register_netdev() fails, the program will go to label err_hw_init, and then to label err_ioremap. In free_netdev() which is just below label err_ioremap, there is `list_for_each_entry_safe` and `netif_napi_del` which aims to delete all entries in `dev->napi_list`. The program has added an entry `adapter->rx_ring->napi` which is added by `netif_napi_add` in igbvf_alloc_queues(). However, adapter->rx_ring has been freed below label err_hw_init. So this a UAF. In terms of how to patch the problem, we can refer to igbvf_remove() and delete the entry before `adapter->rx_ring`. The KASAN logs are as follows: [ 35.126075] BUG: KASAN: use-after-free in free_netdev+0x1fd/0x450 [ 35.127170] Read of size 8 at addr ffff88810126d990 by task modprobe/366 [ 35.128360] [ 35.128643] CPU: 1 PID: 366 Comm: modprobe Not tainted 5.15.0-rc2+ #14 [ 35.129789] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 [ 35.131749] Call Trace: [ 35.132199] dump_stack_lvl+0x59/0x7b [ 35.132865] print_address_description+0x7c/0x3b0 [ 35.133707] ? free_netdev+0x1fd/0x450 [ 35.134378] __kasan_report+0x160/0x1c0 [ 35.135063] ? free_netdev+0x1fd/0x450 [ 35.135738] kasan_report+0x4b/0x70 [ 35.136367] free_netdev+0x1fd/0x450 [ 35.137006] igbvf_probe+0x121d/0x1a10 [igbvf] [ 35.137808] ? igbvf_vlan_rx_add_vid+0x100/0x100 [igbvf] [ 35.138751] local_pci_probe+0x13c/0x1f0 [ 35.139461] pci_device_probe+0x37e/0x6c0 [ 35.165526] [ 35.165806] Allocated by task 366: [ 35.166414] ____kasan_kmalloc+0xc4/0xf0 [ 35.167117] foo_kmem_cache_alloc_trace+0x3c/0x50 [igbvf] [ 35.168078] igbvf_probe+0x9c5/0x1a10 [igbvf] [ 35.168866] local_pci_probe+0x13c/0x1f0 [ 35.169565] pci_device_probe+0x37e/0x6c0 [ 35.179713] [ 35.179993] Freed by task 366: [ 35.180539] kasan_set_track+0x4c/0x80 [ 35.181211] kasan_set_free_info+0x1f/0x40 [ 35.181942] ____kasan_slab_free+0x103/0x140 [ 35.182703] kfree+0xe3/0x250 [ 35.183239] igbvf_probe+0x1173/0x1a10 [igbvf] [ 35.184040] local_pci_probe+0x13c/0x1f0 Fixes: d4e0fe0 (igbvf: add new driver to support 82576 virtual functions) Reported-by: Zheyu Ma <[email protected]> Signed-off-by: Letu Ren <[email protected]> Tested-by: Konrad Jankowski <[email protected]> Signed-off-by: Tony Nguyen <[email protected]>
When bringing down the netdevice or system shutdown, a panic can be triggered while accessing the sysfs path because the device is already removed. [ 755.549084] mlx5_core 0000:12:00.1: Shutdown was called [ 756.404455] mlx5_core 0000:12:00.0: Shutdown was called ... [ 757.937260] BUG: unable to handle kernel NULL pointer dereference at (null) [ 758.031397] IP: [<ffffffff8ee11acb>] dma_pool_alloc+0x1ab/0x280 crash> bt ... PID: 12649 TASK: ffff8924108f2100 CPU: 1 COMMAND: "amsd" ... #9 [ffff89240e1a38b0] page_fault at ffffffff8f38c778 [exception RIP: dma_pool_alloc+0x1ab] RIP: ffffffff8ee11acb RSP: ffff89240e1a3968 RFLAGS: 00010046 RAX: 0000000000000246 RBX: ffff89243d874100 RCX: 0000000000001000 RDX: 0000000000000000 RSI: 0000000000000246 RDI: ffff89243d874090 RBP: ffff89240e1a39c0 R8: 000000000001f080 R9: ffff8905ffc03c00 R10: ffffffffc04680d4 R11: ffffffff8edde9fd R12: 00000000000080d0 R13: ffff89243d874090 R14: ffff89243d874080 R15: 0000000000000000 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #10 [ffff89240e1a39c8] mlx5_alloc_cmd_msg at ffffffffc04680f3 [mlx5_core] #11 [ffff89240e1a3a18] cmd_exec at ffffffffc046ad62 [mlx5_core] #12 [ffff89240e1a3ab8] mlx5_cmd_exec at ffffffffc046b4fb [mlx5_core] #13 [ffff89240e1a3ae8] mlx5_core_access_reg at ffffffffc0475434 [mlx5_core] #14 [ffff89240e1a3b40] mlx5e_get_fec_caps at ffffffffc04a7348 [mlx5_core] #15 [ffff89240e1a3bb0] get_fec_supported_advertised at ffffffffc04992bf [mlx5_core] #16 [ffff89240e1a3c08] mlx5e_get_link_ksettings at ffffffffc049ab36 [mlx5_core] #17 [ffff89240e1a3ce8] __ethtool_get_link_ksettings at ffffffff8f25db46 #18 [ffff89240e1a3d48] speed_show at ffffffff8f277208 #19 [ffff89240e1a3dd8] dev_attr_show at ffffffff8f0b70e3 #20 [ffff89240e1a3df8] sysfs_kf_seq_show at ffffffff8eedbedf #21 [ffff89240e1a3e18] kernfs_seq_show at ffffffff8eeda596 #22 [ffff89240e1a3e28] seq_read at ffffffff8ee76d10 #23 [ffff89240e1a3e98] kernfs_fop_read at ffffffff8eedaef5 #24 [ffff89240e1a3ed8] vfs_read at ffffffff8ee4e3ff #25 [ffff89240e1a3f08] sys_read at ffffffff8ee4f27f #26 [ffff89240e1a3f50] system_call_fastpath at ffffffff8f395f92 crash> net_device.state ffff89443b0c0000 state = 0x5 (__LINK_STATE_START| __LINK_STATE_NOCARRIER) To prevent this scenario, we also make sure that the netdevice is present. Signed-off-by: suresh kumar <[email protected]> Signed-off-by: David S. Miller <[email protected]>
Change net device's MTU to smaller than IPV6_MIN_MTU or unregister device while matching route. That may trigger null-ptr-deref bug for ip6_ptr probability as following. ========================================================= BUG: KASAN: null-ptr-deref in find_match.part.0+0x70/0x134 Read of size 4 at addr 0000000000000308 by task ping6/263 CPU: 2 PID: 263 Comm: ping6 Not tainted 5.19.0-rc7+ #14 Call trace: dump_backtrace+0x1a8/0x230 show_stack+0x20/0x70 dump_stack_lvl+0x68/0x84 print_report+0xc4/0x120 kasan_report+0x84/0x120 __asan_load4+0x94/0xd0 find_match.part.0+0x70/0x134 __find_rr_leaf+0x408/0x470 fib6_table_lookup+0x264/0x540 ip6_pol_route+0xf4/0x260 ip6_pol_route_output+0x58/0x70 fib6_rule_lookup+0x1a8/0x330 ip6_route_output_flags_noref+0xd8/0x1a0 ip6_route_output_flags+0x58/0x160 ip6_dst_lookup_tail+0x5b4/0x85c ip6_dst_lookup_flow+0x98/0x120 rawv6_sendmsg+0x49c/0xc70 inet_sendmsg+0x68/0x94 Reproducer as following: Firstly, prepare conditions: $ip netns add ns1 $ip netns add ns2 $ip link add veth1 type veth peer name veth2 $ip link set veth1 netns ns1 $ip link set veth2 netns ns2 $ip netns exec ns1 ip -6 addr add 2001:0db8:0:f101::1/64 dev veth1 $ip netns exec ns2 ip -6 addr add 2001:0db8:0:f101::2/64 dev veth2 $ip netns exec ns1 ifconfig veth1 up $ip netns exec ns2 ifconfig veth2 up $ip netns exec ns1 ip -6 route add 2000::/64 dev veth1 metric 1 $ip netns exec ns2 ip -6 route add 2001::/64 dev veth2 metric 1 Secondly, execute the following two commands in two ssh windows respectively: $ip netns exec ns1 sh $while true; do ip -6 addr add 2001:0db8:0:f101::1/64 dev veth1; ip -6 route add 2000::/64 dev veth1 metric 1; ping6 2000::2; done $ip netns exec ns1 sh $while true; do ip link set veth1 mtu 1000; ip link set veth1 mtu 1500; sleep 5; done It is because ip6_ptr has been assigned to NULL in addrconf_ifdown() firstly, then ip6_ignore_linkdown() accesses ip6_ptr directly without NULL check. cpu0 cpu1 fib6_table_lookup __find_rr_leaf addrconf_notify [ NETDEV_CHANGEMTU ] addrconf_ifdown RCU_INIT_POINTER(dev->ip6_ptr, NULL) find_match ip6_ignore_linkdown So we can add NULL check for ip6_ptr before using in ip6_ignore_linkdown() to fix the null-ptr-deref bug. Fixes: dcd1f57 ("net/ipv6: Remove fib6_idev") Signed-off-by: Ziyang Xuan <[email protected]> Reviewed-by: David Ahern <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Jakub Kicinski <[email protected]>
When a system with E810 with existing VFs gets rebooted the following hang may be observed. Pid 1 is hung in iavf_remove(), part of a network driver: PID: 1 TASK: ffff965400e5a340 CPU: 24 COMMAND: "systemd-shutdow" #0 [ffffaad04005fa50] __schedule at ffffffff8b3239cb #1 [ffffaad04005fae8] schedule at ffffffff8b323e2d #2 [ffffaad04005fb00] schedule_hrtimeout_range_clock at ffffffff8b32cebc #3 [ffffaad04005fb80] usleep_range_state at ffffffff8b32c930 #4 [ffffaad04005fbb0] iavf_remove at ffffffffc12b9b4c [iavf] #5 [ffffaad04005fbf0] pci_device_remove at ffffffff8add7513 #6 [ffffaad04005fc10] device_release_driver_internal at ffffffff8af08baa #7 [ffffaad04005fc40] pci_stop_bus_device at ffffffff8adcc5fc #8 [ffffaad04005fc60] pci_stop_and_remove_bus_device at ffffffff8adcc81e #9 [ffffaad04005fc70] pci_iov_remove_virtfn at ffffffff8adf9429 #10 [ffffaad04005fca8] sriov_disable at ffffffff8adf98e4 #11 [ffffaad04005fcc8] ice_free_vfs at ffffffffc04bb2c8 [ice] #12 [ffffaad04005fd10] ice_remove at ffffffffc04778fe [ice] #13 [ffffaad04005fd38] ice_shutdown at ffffffffc0477946 [ice] #14 [ffffaad04005fd50] pci_device_shutdown at ffffffff8add58f1 #15 [ffffaad04005fd70] device_shutdown at ffffffff8af05386 #16 [ffffaad04005fd98] kernel_restart at ffffffff8a92a870 #17 [ffffaad04005fda8] __do_sys_reboot at ffffffff8a92abd6 #18 [ffffaad04005fee0] do_syscall_64 at ffffffff8b317159 #19 [ffffaad04005ff08] __context_tracking_enter at ffffffff8b31b6fc #20 [ffffaad04005ff18] syscall_exit_to_user_mode at ffffffff8b31b50d #21 [ffffaad04005ff28] do_syscall_64 at ffffffff8b317169 #22 [ffffaad04005ff50] entry_SYSCALL_64_after_hwframe at ffffffff8b40009b RIP: 00007f1baa5c13d7 RSP: 00007fffbcc55a98 RFLAGS: 00000202 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f1baa5c13d7 RDX: 0000000001234567 RSI: 0000000028121969 RDI: 00000000fee1dead RBP: 00007fffbcc55ca0 R8: 0000000000000000 R9: 00007fffbcc54e90 R10: 00007fffbcc55050 R11: 0000000000000202 R12: 0000000000000005 R13: 0000000000000000 R14: 00007fffbcc55af0 R15: 0000000000000000 ORIG_RAX: 00000000000000a9 CS: 0033 SS: 002b During reboot all drivers PM shutdown callbacks are invoked. In iavf_shutdown() the adapter state is changed to __IAVF_REMOVE. In ice_shutdown() the call chain above is executed, which at some point calls iavf_remove(). However iavf_remove() expects the VF to be in one of the states __IAVF_RUNNING, __IAVF_DOWN or __IAVF_INIT_FAILED. If that's not the case it sleeps forever. So if iavf_shutdown() gets invoked before iavf_remove() the system will hang indefinitely because the adapter is already in state __IAVF_REMOVE. Fix this by returning from iavf_remove() if the state is __IAVF_REMOVE, as we already went through iavf_shutdown(). Fixes: 9745780 ("iavf: Add waiting so the port is initialized in remove") Fixes: a841733 ("iavf: Fix race condition between iavf_shutdown and iavf_remove") Reported-by: Marius Cornea <[email protected]> Signed-off-by: Stefan Assmann <[email protected]> Reviewed-by: Michal Kubiak <[email protected]> Tested-by: Rafal Romanowski <[email protected]> Signed-off-by: Tony Nguyen <[email protected]>
The cited commit holds encap tbl lock unconditionally when setting up dests. But it may cause the following deadlock: PID: 1063722 TASK: ffffa062ca5d0000 CPU: 13 COMMAND: "handler8" #0 [ffffb14de05b7368] __schedule at ffffffffa1d5aa91 #1 [ffffb14de05b7410] schedule at ffffffffa1d5afdb #2 [ffffb14de05b7430] schedule_preempt_disabled at ffffffffa1d5b528 #3 [ffffb14de05b7440] __mutex_lock at ffffffffa1d5d6cb #4 [ffffb14de05b74e8] mutex_lock_nested at ffffffffa1d5ddeb #5 [ffffb14de05b74f8] mlx5e_tc_tun_encap_dests_set at ffffffffc12f2096 [mlx5_core] #6 [ffffb14de05b7568] post_process_attr at ffffffffc12d9fc5 [mlx5_core] #7 [ffffb14de05b75a0] mlx5e_tc_add_fdb_flow at ffffffffc12de877 [mlx5_core] #8 [ffffb14de05b75f0] __mlx5e_add_fdb_flow at ffffffffc12e0eef [mlx5_core] #9 [ffffb14de05b7660] mlx5e_tc_add_flow at ffffffffc12e12f7 [mlx5_core] #10 [ffffb14de05b76b8] mlx5e_configure_flower at ffffffffc12e1686 [mlx5_core] #11 [ffffb14de05b7720] mlx5e_rep_indr_offload at ffffffffc12e3817 [mlx5_core] #12 [ffffb14de05b7730] mlx5e_rep_indr_setup_tc_cb at ffffffffc12e388a [mlx5_core] #13 [ffffb14de05b7740] tc_setup_cb_add at ffffffffa1ab2ba8 #14 [ffffb14de05b77a0] fl_hw_replace_filter at ffffffffc0bdec2f [cls_flower] #15 [ffffb14de05b7868] fl_change at ffffffffc0be6caa [cls_flower] #16 [ffffb14de05b7908] tc_new_tfilter at ffffffffa1ab71f0 [1031218.028143] wait_for_completion+0x24/0x30 [1031218.028589] mlx5e_update_route_decap_flows+0x9a/0x1e0 [mlx5_core] [1031218.029256] mlx5e_tc_fib_event_work+0x1ad/0x300 [mlx5_core] [1031218.029885] process_one_work+0x24e/0x510 Actually no need to hold encap tbl lock if there is no encap action. Fix it by checking if encap action exists or not before holding encap tbl lock. Fixes: 37c3b9f ("net/mlx5e: Prevent encap offload when neigh update is running") Signed-off-by: Chris Mi <[email protected]> Reviewed-by: Vlad Buslov <[email protected]> Signed-off-by: Saeed Mahameed <[email protected]>
The following processes run into a deadlock. CPU 41 was waiting for CPU 29 to handle a CSD request while holding spinlock "crashdump_lock", but CPU 29 was hung by that spinlock with IRQs disabled. PID: 17360 TASK: ffff95c1090c5c40 CPU: 41 COMMAND: "mrdiagd" !# 0 [ffffb80edbf37b58] __read_once_size at ffffffff9b871a40 include/linux/compiler.h:185:0 !# 1 [ffffb80edbf37b58] atomic_read at ffffffff9b871a40 arch/x86/include/asm/atomic.h:27:0 !# 2 [ffffb80edbf37b58] dump_stack at ffffffff9b871a40 lib/dump_stack.c:54:0 # 3 [ffffb80edbf37b78] csd_lock_wait_toolong at ffffffff9b131ad5 kernel/smp.c:364:0 # 4 [ffffb80edbf37b78] __csd_lock_wait at ffffffff9b131ad5 kernel/smp.c:384:0 # 5 [ffffb80edbf37bf8] csd_lock_wait at ffffffff9b13267a kernel/smp.c:394:0 # 6 [ffffb80edbf37bf8] smp_call_function_many at ffffffff9b13267a kernel/smp.c:843:0 # 7 [ffffb80edbf37c50] smp_call_function at ffffffff9b13279d kernel/smp.c:867:0 # 8 [ffffb80edbf37c50] on_each_cpu at ffffffff9b13279d kernel/smp.c:976:0 # 9 [ffffb80edbf37c78] flush_tlb_kernel_range at ffffffff9b085c4b arch/x86/mm/tlb.c:742:0 #10 [ffffb80edbf37cb8] __purge_vmap_area_lazy at ffffffff9b23a1e0 mm/vmalloc.c:701:0 #11 [ffffb80edbf37ce0] try_purge_vmap_area_lazy at ffffffff9b23a2cc mm/vmalloc.c:722:0 #12 [ffffb80edbf37ce0] free_vmap_area_noflush at ffffffff9b23a2cc mm/vmalloc.c:754:0 #13 [ffffb80edbf37cf8] free_unmap_vmap_area at ffffffff9b23bb3b mm/vmalloc.c:764:0 #14 [ffffb80edbf37cf8] remove_vm_area at ffffffff9b23bb3b mm/vmalloc.c:1509:0 #15 [ffffb80edbf37d18] __vunmap at ffffffff9b23bb8a mm/vmalloc.c:1537:0 #16 [ffffb80edbf37d40] vfree at ffffffff9b23bc85 mm/vmalloc.c:1612:0 #17 [ffffb80edbf37d58] megasas_free_host_crash_buffer [megaraid_sas] at ffffffffc020b7f2 drivers/scsi/megaraid/megaraid_sas_fusion.c:3932:0 #18 [ffffb80edbf37d80] fw_crash_state_store [megaraid_sas] at ffffffffc01f804d drivers/scsi/megaraid/megaraid_sas_base.c:3291:0 #19 [ffffb80edbf37dc0] dev_attr_store at ffffffff9b56dd7b drivers/base/core.c:758:0 #20 [ffffb80edbf37dd0] sysfs_kf_write at ffffffff9b326acf fs/sysfs/file.c:144:0 #21 [ffffb80edbf37de0] kernfs_fop_write at ffffffff9b325fd4 fs/kernfs/file.c:316:0 #22 [ffffb80edbf37e20] __vfs_write at ffffffff9b29418a fs/read_write.c:480:0 #23 [ffffb80edbf37ea8] vfs_write at ffffffff9b294462 fs/read_write.c:544:0 #24 [ffffb80edbf37ee8] SYSC_write at ffffffff9b2946ec fs/read_write.c:590:0 #25 [ffffb80edbf37ee8] SyS_write at ffffffff9b2946ec fs/read_write.c:582:0 #26 [ffffb80edbf37f30] do_syscall_64 at ffffffff9b003ca9 arch/x86/entry/common.c:298:0 #27 [ffffb80edbf37f58] entry_SYSCALL_64 at ffffffff9ba001b1 arch/x86/entry/entry_64.S:238:0 PID: 17355 TASK: ffff95c1090c3d80 CPU: 29 COMMAND: "mrdiagd" !# 0 [ffffb80f2d3c7d30] __read_once_size at ffffffff9b0f2ab0 include/linux/compiler.h:185:0 !# 1 [ffffb80f2d3c7d30] native_queued_spin_lock_slowpath at ffffffff9b0f2ab0 kernel/locking/qspinlock.c:368:0 # 2 [ffffb80f2d3c7d58] pv_queued_spin_lock_slowpath at ffffffff9b0f244b arch/x86/include/asm/paravirt.h:674:0 # 3 [ffffb80f2d3c7d58] queued_spin_lock_slowpath at ffffffff9b0f244b arch/x86/include/asm/qspinlock.h:53:0 # 4 [ffffb80f2d3c7d68] queued_spin_lock at ffffffff9b8961a6 include/asm-generic/qspinlock.h:90:0 # 5 [ffffb80f2d3c7d68] do_raw_spin_lock_flags at ffffffff9b8961a6 include/linux/spinlock.h:173:0 # 6 [ffffb80f2d3c7d68] __raw_spin_lock_irqsave at ffffffff9b8961a6 include/linux/spinlock_api_smp.h:122:0 # 7 [ffffb80f2d3c7d68] _raw_spin_lock_irqsave at ffffffff9b8961a6 kernel/locking/spinlock.c:160:0 # 8 [ffffb80f2d3c7d88] fw_crash_buffer_store [megaraid_sas] at ffffffffc01f8129 drivers/scsi/megaraid/megaraid_sas_base.c:3205:0 # 9 [ffffb80f2d3c7dc0] dev_attr_store at ffffffff9b56dd7b drivers/base/core.c:758:0 #10 [ffffb80f2d3c7dd0] sysfs_kf_write at ffffffff9b326acf fs/sysfs/file.c:144:0 #11 [ffffb80f2d3c7de0] kernfs_fop_write at ffffffff9b325fd4 fs/kernfs/file.c:316:0 #12 [ffffb80f2d3c7e20] __vfs_write at ffffffff9b29418a fs/read_write.c:480:0 #13 [ffffb80f2d3c7ea8] vfs_write at ffffffff9b294462 fs/read_write.c:544:0 #14 [ffffb80f2d3c7ee8] SYSC_write at ffffffff9b2946ec fs/read_write.c:590:0 #15 [ffffb80f2d3c7ee8] SyS_write at ffffffff9b2946ec fs/read_write.c:582:0 #16 [ffffb80f2d3c7f30] do_syscall_64 at ffffffff9b003ca9 arch/x86/entry/common.c:298:0 #17 [ffffb80f2d3c7f58] entry_SYSCALL_64 at ffffffff9ba001b1 arch/x86/entry/entry_64.S:238:0 The lock is used to synchronize different sysfs operations, it doesn't protect any resource that will be touched by an interrupt. Consequently it's not required to disable IRQs. Replace the spinlock with a mutex to fix the deadlock. Signed-off-by: Junxiao Bi <[email protected]> Link: https://lore.kernel.org/r/[email protected] Reviewed-by: Mike Christie <[email protected]> Cc: [email protected] Signed-off-by: Martin K. Petersen <[email protected]>
Fix an error detected by memory sanitizer: ``` ==4033==WARNING: MemorySanitizer: use-of-uninitialized-value #0 0x55fb0fbedfc7 in read_alias_info tools/perf/util/pmu.c:457:6 #1 0x55fb0fbea339 in check_info_data tools/perf/util/pmu.c:1434:2 #2 0x55fb0fbea339 in perf_pmu__check_alias tools/perf/util/pmu.c:1504:9 #3 0x55fb0fbdca85 in parse_events_add_pmu tools/perf/util/parse-events.c:1429:32 #4 0x55fb0f965230 in parse_events_parse tools/perf/util/parse-events.y:299:6 #5 0x55fb0fbdf6b2 in parse_events__scanner tools/perf/util/parse-events.c:1822:8 #6 0x55fb0fbdf8c1 in __parse_events tools/perf/util/parse-events.c:2094:8 #7 0x55fb0fa8ffa9 in parse_events tools/perf/util/parse-events.h:41:9 #8 0x55fb0fa8ffa9 in test_event tools/perf/tests/parse-events.c:2393:8 #9 0x55fb0fa8f458 in test__pmu_events tools/perf/tests/parse-events.c:2551:15 #10 0x55fb0fa6d93f in run_test tools/perf/tests/builtin-test.c:242:9 #11 0x55fb0fa6d93f in test_and_print tools/perf/tests/builtin-test.c:271:8 #12 0x55fb0fa6d082 in __cmd_test tools/perf/tests/builtin-test.c:442:5 #13 0x55fb0fa6d082 in cmd_test tools/perf/tests/builtin-test.c:564:9 #14 0x55fb0f942720 in run_builtin tools/perf/perf.c:322:11 #15 0x55fb0f942486 in handle_internal_command tools/perf/perf.c:375:8 #16 0x55fb0f941dab in run_argv tools/perf/perf.c:419:2 #17 0x55fb0f941dab in main tools/perf/perf.c:535:3 ``` Fixes: 7b723db ("perf pmu: Be lazy about loading event info files from sysfs") Signed-off-by: Ian Rogers <[email protected]> Cc: James Clark <[email protected]> Cc: Kan Liang <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Namhyung Kim <[email protected]>
When creating ceq_0 during probing irdma, cqp.sc_cqp will be sent as a cqp_request to cqp->sc_cqp.sq_ring. If the request is pending when removing the irdma driver or unplugging its aux device, cqp.sc_cqp will be dereferenced as wrong struct in irdma_free_pending_cqp_request(). PID: 3669 TASK: ffff88aef892c000 CPU: 28 COMMAND: "kworker/28:0" #0 [fffffe0000549e38] crash_nmi_callback at ffffffff810e3a34 #1 [fffffe0000549e40] nmi_handle at ffffffff810788b2 #2 [fffffe0000549ea0] default_do_nmi at ffffffff8107938f #3 [fffffe0000549eb8] do_nmi at ffffffff81079582 #4 [fffffe0000549ef0] end_repeat_nmi at ffffffff82e016b4 [exception RIP: native_queued_spin_lock_slowpath+1291] RIP: ffffffff8127e72b RSP: ffff88aa841ef778 RFLAGS: 00000046 RAX: 0000000000000000 RBX: ffff88b01f849700 RCX: ffffffff8127e47e RDX: 0000000000000000 RSI: 0000000000000004 RDI: ffffffff83857ec0 RBP: ffff88afe3e4efc8 R8: ffffed15fc7c9dfa R9: ffffed15fc7c9dfa R10: 0000000000000001 R11: ffffed15fc7c9df9 R12: 0000000000740000 R13: ffff88b01f849708 R14: 0000000000000003 R15: ffffed1603f092e1 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0000 -- <NMI exception stack> -- #5 [ffff88aa841ef778] native_queued_spin_lock_slowpath at ffffffff8127e72b #6 [ffff88aa841ef7b0] _raw_spin_lock_irqsave at ffffffff82c22aa4 #7 [ffff88aa841ef7c8] __wake_up_common_lock at ffffffff81257363 #8 [ffff88aa841ef888] irdma_free_pending_cqp_request at ffffffffa0ba12cc [irdma] #9 [ffff88aa841ef958] irdma_cleanup_pending_cqp_op at ffffffffa0ba1469 [irdma] #10 [ffff88aa841ef9c0] irdma_ctrl_deinit_hw at ffffffffa0b2989f [irdma] #11 [ffff88aa841efa28] irdma_remove at ffffffffa0b252df [irdma] #12 [ffff88aa841efae8] auxiliary_bus_remove at ffffffff8219afdb #13 [ffff88aa841efb00] device_release_driver_internal at ffffffff821882e6 #14 [ffff88aa841efb38] bus_remove_device at ffffffff82184278 #15 [ffff88aa841efb88] device_del at ffffffff82179d23 #16 [ffff88aa841efc48] ice_unplug_aux_dev at ffffffffa0eb1c14 [ice] #17 [ffff88aa841efc68] ice_service_task at ffffffffa0d88201 [ice] #18 [ffff88aa841efde8] process_one_work at ffffffff811c589a #19 [ffff88aa841efe60] worker_thread at ffffffff811c71ff #20 [ffff88aa841eff10] kthread at ffffffff811d87a0 #21 [ffff88aa841eff50] ret_from_fork at ffffffff82e0022f Fixes: 44d9e52 ("RDMA/irdma: Implement device initialization definitions") Link: https://lore.kernel.org/r/[email protected] Suggested-by: "Ismail, Mustafa" <[email protected]> Signed-off-by: Shifeng Li <[email protected]> Reviewed-by: Shiraz Saleem <[email protected]> Signed-off-by: Jason Gunthorpe <[email protected]>
The top syzbot report for networking (#14 for the entire kernel) is the queue timeout splat. We kept it around for a long time, because in real life it provides pretty strong signal that something is wrong with the driver or the device. Removing it is also likely to break monitoring for those who track it as a kernel warning. Nevertheless, WARN()ings are best suited for catching kernel programming bugs. If a Tx queue gets starved due to a pause storm, priority configuration, or other weirdness - that's obviously a problem, but not a problem we can fix at the kernel level. Bite the bullet and convert the WARN() to a print. Before: NETDEV WATCHDOG: eni1np1 (netdevsim): transmit queue 0 timed out 1975 ms WARNING: CPU: 0 PID: 0 at net/sched/sch_generic.c:525 dev_watchdog+0x39e/0x3b0 [... completely pointless stack trace of a timer follows ...] Now: netdevsim netdevsim1 eni1np1: NETDEV WATCHDOG: CPU: 0: transmit queue 0 timed out 1769 ms Alternatively we could mark the drivers which syzbot has learned to abuse as "print-instead-of-WARN" selectively. Reported-by: [email protected] Reviewed-by: Jiri Pirko <[email protected]> Reviewed-by: Eric Dumazet <[email protected]> Reviewed-by: Jamal Hadi Salim <[email protected]> Signed-off-by: Jakub Kicinski <[email protected]> Signed-off-by: David S. Miller <[email protected]>
Petr Machata says: ==================== mlxsw: Add support for new reset flow Ido Schimmel writes: This patchset changes mlxsw to issue a PCI reset during probe and devlink reload so that the PCI firmware could be upgraded without a reboot. Unlike the old version of this patchset [1], in this version the driver no longer tries to issue a PCI reset by triggering a PCI link toggle on its own, but instead calls the PCI core to issue the reset. The PCI APIs require the device lock to be held which is why patches Patches #7 adds reset method quirk for NVIDIA Spectrum devices. Patch #8 adds a debug level print in PCI core so that device ready delay will be printed even if it is shorter than one second. Patches #9-#11 are straightforward preparations in mlxsw. Patch #12 finally implements the new reset flow in mlxsw. Patch #13 adds PCI reset handlers in mlxsw to avoid user space from resetting the device from underneath an unaware driver. Instead, the driver is gracefully de-initialized before the PCI reset and then initialized again after it. Patch #14 adds a PCI reset selftest to make sure this code path does not regress. [1] https://lore.kernel.org/netdev/[email protected]/ ==================== Signed-off-by: David S. Miller <[email protected]>
Petr Machata says: ==================== mlxsw: Preparations for support of CFF flood mode PGT is an in-HW table that maps addresses to sets of ports. Then when some HW process needs a set of ports as an argument, instead of embedding the actual set in the dynamic configuration, what gets configured is the address referencing the set. The HW then works with the appropriate PGT entry. Among other allocations, the PGT currently contains two large blocks for bridge flooding: one for 802.1q and one for 802.1d. Within each of these blocks are three tables, for unknown-unicast, multicast and broadcast flooding: . . . | 802.1q | 802.1d | . . . | UC | MC | BC | UC | MC | BC | \______ _____/ \_____ ______/ v v FID flood vectors Thus each FID (which corresponds to an 802.1d bridge or one VLAN in an 802.1q bridge) uses three flood vectors spread across a fairly large region of PGT. This way of organizing the flood table (called "controlled") is not very flexible. E.g. to decrease a bridge scale and store more IP MC vectors, one would need to completely rewrite the bridge PGT blocks, or resort to hacks such as storing individual MC flood vectors into unused part of the bridge table. In order to address these shortcomings, Spectrum-2 and above support what is called CFF flood mode, for Compressed FID Flooding. In CFF flood mode, each FID has a little table of its own, with three entries adjacent to each other, one for unknown-UC, one for MC, one for BC. This allows for a much more fine-grained approach to PGT management, where bits of it are allocated on demand. . . . | FID | FID | FID | FID | FID | . . . |U|M|B|U|M|B|U|M|B|U|M|B|U|M|B| \_____________ _____________/ v FID flood vectors Besides the FID table organization, the CFF flood mode also impacts Router Subport (RSP) table. This table contains flood vectors for rFIDs, which are FIDs that reference front panel ports or LAGs. The RSP table contains two entries per front panel port and LAG, one for unknown-UC traffic, and one for everything else. Currently, the FW allocates and manages the table in its own part of PGT. rFIDs are marked with flood_rsp bit and managed specially. In CFF mode, rFIDs are managed as all other FIDs. The driver therefore has to allocate and maintain the flood vectors. Like with bridge FIDs, this is more work, but increases flexibility of the system. The FW currently supports both the controlled and CFF flood modes. To shed complexity, in the future it should only support CFF flood mode. Hence this patchset, which is the first in series of two to add CFF flood mode support to mlxsw. There are FW versions out there that do not support CFF flood mode, and on Spectrum-1 in particular, there is no plan to support it at all. mlxsw will therefore have to support both controlled flood mode as well as CFF. Another aspect is that at least on Spectrum-1, there are FW versions out there that claim to support CFF flood mode, but then reject or ignore configurations enabling the same. The driver thus has to have a say in whether an attempt to configure CFF flood mode should even be made. Much like with the LAG mode, the feature is therefore expressed in terms of "does the driver prefer CFF flood mode?", and "what flood mode the PCI module managed to configure the FW with". This gives to the driver a chance to determine whether CFF flood mode configuration should be attempted. In this patchset, we lay the ground with new definitions, registers and their fields, and some minor code shaping. The next patchset will be more focused on introducing necessary abstractions and implementation. - Patches #1 and #2 add CFF-related items to the command interface. - Patch #3 adds a new resource, for maximum number of flood profiles supported. (A flood profile is a mapping between traffic type and offset in the per-FID flood vector table.) - Patches #4 to #8 adjust reg.h. The SFFP register is added, which is used for configuring the abovementioned traffic-type-to-offset mapping. The SFMR, register, which serves for FID configuration, is extended with fields specific to CFF mode. And other minor adjustments. - Patches #9 and #10 add the plumbing for CFF mode: a way to request that CFF flood mode be configured, and a way to query the flood mode that was actually configured. - Patch #11 removes dead code. - Patches #12 and #13 add helpers that the next patchset will make use of. Patch #14 moves RIF setup ahead so that FID code can make use of it. ==================== Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Jakub Kicinski <[email protected]>
Petr Machata says: ==================== mlxsw: Support CFF flood mode The registers to configure to initialize a flood table differ between the controlled and CFF flood modes. In therefore needs to be an op. Add it, hook up the current init to the existing families, and invoke the op. PGT is an in-HW table that maps addresses to sets of ports. Then when some HW process needs a set of ports as an argument, instead of embedding the actual set in the dynamic configuration, what gets configured is the address referencing the set. The HW then works with the appropriate PGT entry. Among other allocations, the PGT currently contains two large blocks for bridge flooding: one for 802.1q and one for 802.1d. Within each of these blocks are three tables, for unknown-unicast, multicast and broadcast flooding: . . . | 802.1q | 802.1d | . . . | UC | MC | BC | UC | MC | BC | \______ _____/ \_____ ______/ v v FID flood vectors Thus each FID (which corresponds to an 802.1d bridge or one VLAN in an 802.1q bridge) uses three flood vectors spread across a fairly large region of PGT. This way of organizing the flood table (called "controlled") is not very flexible. E.g. to decrease a bridge scale and store more IP MC vectors, one would need to completely rewrite the bridge PGT blocks, or resort to hacks such as storing individual MC flood vectors into unused part of the bridge table. In order to address these shortcomings, Spectrum-2 and above support what is called CFF flood mode, for Compressed FID Flooding. In CFF flood mode, each FID has a little table of its own, with three entries adjacent to each other, one for unknown-UC, one for MC, one for BC. This allows for a much more fine-grained approach to PGT management, where bits of it are allocated on demand. . . . | FID | FID | FID | FID | FID | . . . |U|M|B|U|M|B|U|M|B|U|M|B|U|M|B| \_____________ _____________/ v FID flood vectors Besides the FID table organization, the CFF flood mode also impacts Router Subport (RSP) table. This table contains flood vectors for rFIDs, which are FIDs that reference front panel ports or LAGs. The RSP table contains two entries per front panel port and LAG, one for unknown-UC traffic, and one for everything else. Currently, the FW allocates and manages the table in its own part of PGT. rFIDs are marked with flood_rsp bit and managed specially. In CFF mode, rFIDs are managed as all other FIDs. The driver therefore has to allocate and maintain the flood vectors. Like with bridge FIDs, this is more work, but increases flexibility of the system. The FW currently supports both the controlled and CFF flood modes. To shed complexity, in the future it should only support CFF flood mode. Hence this patchset, which adds CFF flood mode support to mlxsw. Since mlxsw needs to maintain both the controlled mode as well as CFF mode support, we will keep the layout as compatible as possible. The bridge tables will stay in the same overall shape, just their inner organization will change from flood mode -> FID to FID -> flood mode. Likewise will RSP be kept as a contiguous block of PGT memory, as was the case when the FW maintained it. - The way FIDs get configured under the CFF flood mode differs from the currently used controlled mode. The simple approach of having several globally visible arrays for spectrum.c to statically choose from no longer works. Patch #1 thus privatizes all FID initialization and finalization logic, and exposes it as ops instead. - Patch #2 renames the ops that are specific to the controlled mode, to make room in the namespace for the CFF variants. Patch #3 extracts a helper to compute flood table base out of mlxsw_sp_fid_flood_table_mid(). - The op fid_setup configured fid_offset, i.e. the number of this FID within its family. For rFIDs in CFF mode, to determine this number, the driver will need to do fallible queries. Thus in patch #4, make the FID setup operation fallible as well. - Flood mode initialization routine differs between the controlled and CFF flood modes. The controlled mode needs to configure flood table layout, which the CFF mode does not need to do. In patch #5, move mlxsw_sp_fid_flood_table_init() up so that the following patch can make use of it. In patch #6, add an op to be invoked per table (if defined). - The current way of determining PGT allocation size depends on the number of FIDs and number of flood tables. RFIDs however have PGT footprint depending not on number of FIDs, but on number of ports and LAGs, because which ports an rFID should flood to does not depend on the FID itself, but on the port or LAG that it references. Therefore in patch #7, add FID family ops for determining PGT allocation size. - As elaborated above, layout of PGT will differ between controlled and CFF flood modes. In CFF mode, it will further differ between rFIDs and other FIDs (as described at previous patch). The way to pack the SFMR register to configure a FID will likewise differ from controlled to CFF. Thus in patches #8 and #9 add FID family ops to determine PGT base address for a FID and to pack SFMR. - Patches #10 and #11 add more bits for RSP support. In patch #10, add a new traffic type enumerator, for non-UC traffic. This is a combination of BC and MC traffic, but the way that mlxsw maps these mnemonic names to actual traffic type configurations requires that we have a new name to describe this class of traffic. Patch #11 then adds hooks necessary for RSP table maintenance. As ports come and go, and join and leave LAGs, it is necessary to update flood vectors that the rFIDs use. These new hooks will make that possible. - Patches #12, #13 and #14 introduce flood profiles. These have been implicit so far, but the way that CFF flood mode works with profile IDs requires that we make them explicit. Thus in patch #12, introduce flood profile objects as a set of flood tables that FID families then refer to. The FID code currently only uses a single flood profile. In patch #13, add a flood profile ID to flood profile objects. In patch #14, when in CFF mode, configure SFFP according to the existing flood profiles (or the one that exists as of that point). - Patches #15 and #16 add code to implement, respectively, bridge FIDs and RSP FIDs in CFF mode. - In patch #17, toggle flood_mode_prefer_cff on Spectrum-2 and above, which makes the newly-added code live. ==================== Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Jakub Kicinski <[email protected]>
Make arch_kunwind_consume_entry() as __always_inline otherwise the compiler might not inline it and allow attaching probes to it. Without this, just probing arch_kunwind_consume_entry() via <tracefs>/kprobe_events will crash the kernel on arm64. The crash can be reproduced using the following compiler and kernel combination: clang version 19.0.0git (https://github.com/llvm/llvm-project.git d68d29516102252f6bf6dc23fb22cef144ca1cb3) commit 87adede ("Merge tag 'net-6.8-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net") [root@localhost ~]# echo 'p arch_kunwind_consume_entry' > /sys/kernel/debug/tracing/kprobe_events [root@localhost ~]# echo 1 > /sys/kernel/debug/tracing/events/kprobes/enable Modules linked in: aes_ce_blk aes_ce_cipher ghash_ce sha2_ce virtio_net sha256_arm64 sha1_ce arm_smccc_trng net_failover failover virtio_mmio uio_pdrv_genirq uio sch_fq_codel dm_mod dax configfs CPU: 3 PID: 1405 Comm: bash Not tainted 6.8.0-rc6+ Rust-for-Linux#14 Hardware name: linux,dummy-virt (DT) pstate: 604003c5 (nZCv DAIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : kprobe_breakpoint_handler+0x17c/0x258 lr : kprobe_breakpoint_handler+0x17c/0x258 sp : ffff800085d6ab60 x29: ffff800085d6ab60 x28: ffff0000066f0040 x27: ffff0000066f0b20 x26: ffff800081fa7b0c x25: 0000000000000002 x24: ffff00000b29bd18 x23: ffff00007904c590 x22: ffff800081fa6590 x21: ffff800081fa6588 x20: ffff00000b29bd18 x19: ffff800085d6ac40 x18: 0000000000000079 x17: 0000000000000001 x16: ffffffffffffffff x15: 0000000000000004 x14: ffff80008277a940 x13: 0000000000000003 x12: 0000000000000003 x11: 00000000fffeffff x10: c0000000fffeffff x9 : aa95616fdf80cc00 x8 : aa95616fdf80cc00 x7 : 205d343137373231 x6 : ffff800080fb48ec x5 : 0000000000000000 x4 : 0000000000000001 x3 : 0000000000000000 x2 : 0000000000000000 x1 : ffff800085d6a910 x0 : 0000000000000079 Call trace: kprobes: Failed to recover from reentered kprobes. kprobes: Dump kprobe: .symbol_name = arch_kunwind_consume_entry, .offset = 0, .addr = arch_kunwind_consume_entry+0x0/0x40 ------------[ cut here ]------------ kernel BUG at arch/arm64/kernel/probes/kprobes.c:241! kprobes: Failed to recover from reentered kprobes. kprobes: Dump kprobe: .symbol_name = arch_kunwind_consume_entry, .offset = 0, .addr = arch_kunwind_consume_entry+0x0/0x40 Fixes: 1aba06e ("arm64: stacktrace: factor out kunwind_stack_walk()") Signed-off-by: Puranjay Mohan <[email protected]> Reviewed-by: Mark Rutland <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Will Deacon <[email protected]>
Although ipv6_get_ifaddr walks inet6_addr_lst under the RCU lock, it still means hlist_for_each_entry_rcu can return an item that got removed from the list. The memory itself of such item is not freed thanks to RCU but nothing guarantees the actual content of the memory is sane. In particular, the reference count can be zero. This can happen if ipv6_del_addr is called in parallel. ipv6_del_addr removes the entry from inet6_addr_lst (hlist_del_init_rcu(&ifp->addr_lst)) and drops all references (__in6_ifa_put(ifp) + in6_ifa_put(ifp)). With bad enough timing, this can happen: 1. In ipv6_get_ifaddr, hlist_for_each_entry_rcu returns an entry. 2. Then, the whole ipv6_del_addr is executed for the given entry. The reference count drops to zero and kfree_rcu is scheduled. 3. ipv6_get_ifaddr continues and tries to increments the reference count (in6_ifa_hold). 4. The rcu is unlocked and the entry is freed. 5. The freed entry is returned. Prevent increasing of the reference count in such case. The name in6_ifa_hold_safe is chosen to mimic the existing fib6_info_hold_safe. [ 41.506330] refcount_t: addition on 0; use-after-free. [ 41.506760] WARNING: CPU: 0 PID: 595 at lib/refcount.c:25 refcount_warn_saturate+0xa5/0x130 [ 41.507413] Modules linked in: veth bridge stp llc [ 41.507821] CPU: 0 PID: 595 Comm: python3 Not tainted 6.9.0-rc2.main-00208-g49563be82afa #14 [ 41.508479] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) [ 41.509163] RIP: 0010:refcount_warn_saturate+0xa5/0x130 [ 41.509586] Code: ad ff 90 0f 0b 90 90 c3 cc cc cc cc 80 3d c0 30 ad 01 00 75 a0 c6 05 b7 30 ad 01 01 90 48 c7 c7 38 cc 7a 8c e8 cc 18 ad ff 90 <0f> 0b 90 90 c3 cc cc cc cc 80 3d 98 30 ad 01 00 0f 85 75 ff ff ff [ 41.510956] RSP: 0018:ffffbda3c026baf0 EFLAGS: 00010282 [ 41.511368] RAX: 0000000000000000 RBX: ffff9e9c46914800 RCX: 0000000000000000 [ 41.511910] RDX: ffff9e9c7ec29c00 RSI: ffff9e9c7ec1c900 RDI: ffff9e9c7ec1c900 [ 41.512445] RBP: ffff9e9c43660c9c R08: 0000000000009ffb R09: 00000000ffffdfff [ 41.512998] R10: 00000000ffffdfff R11: ffffffff8ca58a40 R12: ffff9e9c4339a000 [ 41.513534] R13: 0000000000000001 R14: ffff9e9c438a0000 R15: ffffbda3c026bb48 [ 41.514086] FS: 00007fbc4cda1740(0000) GS:ffff9e9c7ec00000(0000) knlGS:0000000000000000 [ 41.514726] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 41.515176] CR2: 000056233b337d88 CR3: 000000000376e006 CR4: 0000000000370ef0 [ 41.515713] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 41.516252] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 41.516799] Call Trace: [ 41.517037] <TASK> [ 41.517249] ? __warn+0x7b/0x120 [ 41.517535] ? refcount_warn_saturate+0xa5/0x130 [ 41.517923] ? report_bug+0x164/0x190 [ 41.518240] ? handle_bug+0x3d/0x70 [ 41.518541] ? exc_invalid_op+0x17/0x70 [ 41.520972] ? asm_exc_invalid_op+0x1a/0x20 [ 41.521325] ? refcount_warn_saturate+0xa5/0x130 [ 41.521708] ipv6_get_ifaddr+0xda/0xe0 [ 41.522035] inet6_rtm_getaddr+0x342/0x3f0 [ 41.522376] ? __pfx_inet6_rtm_getaddr+0x10/0x10 [ 41.522758] rtnetlink_rcv_msg+0x334/0x3d0 [ 41.523102] ? netlink_unicast+0x30f/0x390 [ 41.523445] ? __pfx_rtnetlink_rcv_msg+0x10/0x10 [ 41.523832] netlink_rcv_skb+0x53/0x100 [ 41.524157] netlink_unicast+0x23b/0x390 [ 41.524484] netlink_sendmsg+0x1f2/0x440 [ 41.524826] __sys_sendto+0x1d8/0x1f0 [ 41.525145] __x64_sys_sendto+0x1f/0x30 [ 41.525467] do_syscall_64+0xa5/0x1b0 [ 41.525794] entry_SYSCALL_64_after_hwframe+0x72/0x7a [ 41.526213] RIP: 0033:0x7fbc4cfcea9a [ 41.526528] Code: d8 64 89 02 48 c7 c0 ff ff ff ff eb b8 0f 1f 00 f3 0f 1e fa 41 89 ca 64 8b 04 25 18 00 00 00 85 c0 75 15 b8 2c 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 7e c3 0f 1f 44 00 00 41 54 48 83 ec 30 44 89 [ 41.527942] RSP: 002b:00007ffcf54012a8 EFLAGS: 00000246 ORIG_RAX: 000000000000002c [ 41.528593] RAX: ffffffffffffffda RBX: 00007ffcf5401368 RCX: 00007fbc4cfcea9a [ 41.529173] RDX: 000000000000002c RSI: 00007fbc4b9d9bd0 RDI: 0000000000000005 [ 41.529786] RBP: 00007fbc4bafb040 R08: 00007ffcf54013e0 R09: 000000000000000c [ 41.530375] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 [ 41.530977] R13: ffffffffc4653600 R14: 0000000000000001 R15: 00007fbc4ca85d1b [ 41.531573] </TASK> Fixes: 5c578ae ("IPv6: convert addrconf hash list to RCU") Reviewed-by: Eric Dumazet <[email protected]> Reviewed-by: David Ahern <[email protected]> Signed-off-by: Jiri Benc <[email protected]> Link: https://lore.kernel.org/r/8ab821e36073a4a406c50ec83c9e8dc586c539e4.1712585809.git.jbenc@redhat.com Signed-off-by: Jakub Kicinski <[email protected]>
vhost_worker will call tun call backs to receive packets. If too many illegal packets arrives, tun_do_read will keep dumping packet contents. When console is enabled, it will costs much more cpu time to dump packet and soft lockup will be detected. net_ratelimit mechanism can be used to limit the dumping rate. PID: 33036 TASK: ffff949da6f20000 CPU: 23 COMMAND: "vhost-32980" #0 [fffffe00003fce50] crash_nmi_callback at ffffffff89249253 #1 [fffffe00003fce58] nmi_handle at ffffffff89225fa3 #2 [fffffe00003fceb0] default_do_nmi at ffffffff8922642e #3 [fffffe00003fced0] do_nmi at ffffffff8922660d #4 [fffffe00003fcef0] end_repeat_nmi at ffffffff89c01663 [exception RIP: io_serial_in+20] RIP: ffffffff89792594 RSP: ffffa655314979e8 RFLAGS: 00000002 RAX: ffffffff89792500 RBX: ffffffff8af428a0 RCX: 0000000000000000 RDX: 00000000000003fd RSI: 0000000000000005 RDI: ffffffff8af428a0 RBP: 0000000000002710 R8: 0000000000000004 R9: 000000000000000f R10: 0000000000000000 R11: ffffffff8acbf64f R12: 0000000000000020 R13: ffffffff8acbf698 R14: 0000000000000058 R15: 0000000000000000 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #5 [ffffa655314979e8] io_serial_in at ffffffff89792594 #6 [ffffa655314979e8] wait_for_xmitr at ffffffff89793470 #7 [ffffa65531497a08] serial8250_console_putchar at ffffffff897934f6 #8 [ffffa65531497a20] uart_console_write at ffffffff8978b605 #9 [ffffa65531497a48] serial8250_console_write at ffffffff89796558 #10 [ffffa65531497ac8] console_unlock at ffffffff89316124 #11 [ffffa65531497b10] vprintk_emit at ffffffff89317c07 #12 [ffffa65531497b68] printk at ffffffff89318306 #13 [ffffa65531497bc8] print_hex_dump at ffffffff89650765 #14 [ffffa65531497ca8] tun_do_read at ffffffffc0b06c27 [tun] #15 [ffffa65531497d38] tun_recvmsg at ffffffffc0b06e34 [tun] #16 [ffffa65531497d68] handle_rx at ffffffffc0c5d682 [vhost_net] #17 [ffffa65531497ed0] vhost_worker at ffffffffc0c644dc [vhost] #18 [ffffa65531497f10] kthread at ffffffff892d2e72 #19 [ffffa65531497f50] ret_from_fork at ffffffff89c0022f Fixes: ef3db4a ("tun: avoid BUG, dump packet on GSO errors") Signed-off-by: Lei Chen <[email protected]> Reviewed-by: Willem de Bruijn <[email protected]> Acked-by: Jason Wang <[email protected]> Reviewed-by: Eric Dumazet <[email protected]> Acked-by: Michael S. Tsirkin <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Jakub Kicinski <[email protected]>
The rehash delayed work migrates filters from one region to another. This is done by iterating over all chunks (all the filters with the same priority) in the region and in each chunk iterating over all the filters. If the migration fails, the code tries to migrate the filters back to the old region. However, the rollback itself can also fail in which case another migration will be erroneously performed. Besides the fact that this ping pong is not a very good idea, it also creates a problem. Each virtual chunk references two chunks: The currently used one ('vchunk->chunk') and a backup ('vchunk->chunk2'). During migration the first holds the chunk we want to migrate filters to and the second holds the chunk we are migrating filters from. The code currently assumes - but does not verify - that the backup chunk does not exist (NULL) if the currently used chunk does not reference the target region. This assumption breaks when we are trying to rollback a rollback, resulting in the backup chunk being overwritten and leaked [1]. Fix by not rolling back a failed rollback and add a warning to avoid future cases. [1] WARNING: CPU: 5 PID: 1063 at lib/parman.c:291 parman_destroy+0x17/0x20 Modules linked in: CPU: 5 PID: 1063 Comm: kworker/5:11 Tainted: G W 6.9.0-rc2-custom-00784-gc6a05c468a0b #14 Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019 Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work RIP: 0010:parman_destroy+0x17/0x20 [...] Call Trace: <TASK> mlxsw_sp_acl_atcam_region_fini+0x19/0x60 mlxsw_sp_acl_tcam_region_destroy+0x49/0xf0 mlxsw_sp_acl_tcam_vregion_rehash_work+0x1f1/0x470 process_one_work+0x151/0x370 worker_thread+0x2cb/0x3e0 kthread+0xd0/0x100 ret_from_fork+0x34/0x50 ret_from_fork_asm+0x1a/0x30 </TASK> Fixes: 8435005 ("mlxsw: spectrum_acl: Do rollback as another call to mlxsw_sp_acl_tcam_vchunk_migrate_all()") Signed-off-by: Ido Schimmel <[email protected]> Tested-by: Alexander Zubkov <[email protected]> Reviewed-by: Petr Machata <[email protected]> Signed-off-by: Petr Machata <[email protected]> Reviewed-by: Simon Horman <[email protected]> Link: https://lore.kernel.org/r/d5edd4f4503934186ae5cfe268503b16345b4e0f.1713797103.git.petrm@nvidia.com Signed-off-by: Jakub Kicinski <[email protected]>
When I did memory failure tests recently, below panic occurs: kernel BUG at include/linux/mm.h:1135! invalid opcode: 0000 [#1] PREEMPT SMP NOPTI CPU: 9 PID: 137 Comm: kswapd1 Not tainted 6.9.0-rc4-00491-gd5ce28f156fe-dirty #14 RIP: 0010:shrink_huge_zero_page_scan+0x168/0x1a0 RSP: 0018:ffff9933c6c57bd0 EFLAGS: 00000246 RAX: 000000000000003e RBX: 0000000000000000 RCX: ffff88f61fc5c9c8 RDX: 0000000000000000 RSI: 0000000000000027 RDI: ffff88f61fc5c9c0 RBP: ffffcd7c446b0000 R08: ffffffff9a9405f0 R09: 0000000000005492 R10: 00000000000030ea R11: ffffffff9a9405f0 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000000 R15: ffff88e703c4ac00 FS: 0000000000000000(0000) GS:ffff88f61fc40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055f4da6e9878 CR3: 0000000c71048000 CR4: 00000000000006f0 Call Trace: <TASK> do_shrink_slab+0x14f/0x6a0 shrink_slab+0xca/0x8c0 shrink_node+0x2d0/0x7d0 balance_pgdat+0x33a/0x720 kswapd+0x1f3/0x410 kthread+0xd5/0x100 ret_from_fork+0x2f/0x50 ret_from_fork_asm+0x1a/0x30 </TASK> Modules linked in: mce_inject hwpoison_inject ---[ end trace 0000000000000000 ]--- RIP: 0010:shrink_huge_zero_page_scan+0x168/0x1a0 RSP: 0018:ffff9933c6c57bd0 EFLAGS: 00000246 RAX: 000000000000003e RBX: 0000000000000000 RCX: ffff88f61fc5c9c8 RDX: 0000000000000000 RSI: 0000000000000027 RDI: ffff88f61fc5c9c0 RBP: ffffcd7c446b0000 R08: ffffffff9a9405f0 R09: 0000000000005492 R10: 00000000000030ea R11: ffffffff9a9405f0 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000000 R15: ffff88e703c4ac00 FS: 0000000000000000(0000) GS:ffff88f61fc40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055f4da6e9878 CR3: 0000000c71048000 CR4: 00000000000006f0 The root cause is that HWPoison flag will be set for huge_zero_folio without increasing the folio refcnt. But then unpoison_memory() will decrease the folio refcnt unexpectedly as it appears like a successfully hwpoisoned folio leading to VM_BUG_ON_PAGE(page_ref_count(page) == 0) when releasing huge_zero_folio. Skip unpoisoning huge_zero_folio in unpoison_memory() to fix this issue. We're not prepared to unpoison huge_zero_folio yet. Link: https://lkml.kernel.org/r/[email protected] Fixes: 478d134 ("mm/huge_memory: do not overkill when splitting huge_zero_page") Signed-off-by: Miaohe Lin <[email protected]> Acked-by: David Hildenbrand <[email protected]> Reviewed-by: Yang Shi <[email protected]> Reviewed-by: Oscar Salvador <[email protected]> Reviewed-by: Anshuman Khandual <[email protected]> Cc: Naoya Horiguchi <[email protected]> Cc: Xu Yu <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
We have been seeing crashes on duplicate keys in btrfs_set_item_key_safe(): BTRFS critical (device vdb): slot 4 key (450 108 8192) new key (450 108 8192) ------------[ cut here ]------------ kernel BUG at fs/btrfs/ctree.c:2620! invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 3139 Comm: xfs_io Kdump: loaded Not tainted 6.9.0 #6 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014 RIP: 0010:btrfs_set_item_key_safe+0x11f/0x290 [btrfs] With the following stack trace: #0 btrfs_set_item_key_safe (fs/btrfs/ctree.c:2620:4) #1 btrfs_drop_extents (fs/btrfs/file.c:411:4) #2 log_one_extent (fs/btrfs/tree-log.c:4732:9) #3 btrfs_log_changed_extents (fs/btrfs/tree-log.c:4955:9) #4 btrfs_log_inode (fs/btrfs/tree-log.c:6626:9) #5 btrfs_log_inode_parent (fs/btrfs/tree-log.c:7070:8) #6 btrfs_log_dentry_safe (fs/btrfs/tree-log.c:7171:8) #7 btrfs_sync_file (fs/btrfs/file.c:1933:8) #8 vfs_fsync_range (fs/sync.c:188:9) #9 vfs_fsync (fs/sync.c:202:9) #10 do_fsync (fs/sync.c:212:9) #11 __do_sys_fdatasync (fs/sync.c:225:9) #12 __se_sys_fdatasync (fs/sync.c:223:1) #13 __x64_sys_fdatasync (fs/sync.c:223:1) #14 do_syscall_x64 (arch/x86/entry/common.c:52:14) #15 do_syscall_64 (arch/x86/entry/common.c:83:7) #16 entry_SYSCALL_64+0xaf/0x14c (arch/x86/entry/entry_64.S:121) So we're logging a changed extent from fsync, which is splitting an extent in the log tree. But this split part already exists in the tree, triggering the BUG(). This is the state of the log tree at the time of the crash, dumped with drgn (https://github.com/osandov/drgn/blob/main/contrib/btrfs_tree.py) to get more details than btrfs_print_leaf() gives us: >>> print_extent_buffer(prog.crashed_thread().stack_trace()[0]["eb"]) leaf 33439744 level 0 items 72 generation 9 owner 18446744073709551610 leaf 33439744 flags 0x100000000000000 fs uuid e5bd3946-400c-4223-8923-190ef1f18677 chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da item 0 key (450 INODE_ITEM 0) itemoff 16123 itemsize 160 generation 7 transid 9 size 8192 nbytes 8473563889606862198 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 204 flags 0x10(PREALLOC) atime 1716417703.220000000 (2024-05-22 15:41:43) ctime 1716417704.983333333 (2024-05-22 15:41:44) mtime 1716417704.983333333 (2024-05-22 15:41:44) otime 17592186044416.000000000 (559444-03-08 01:40:16) item 1 key (450 INODE_REF 256) itemoff 16110 itemsize 13 index 195 namelen 3 name: 193 item 2 key (450 XATTR_ITEM 1640047104) itemoff 16073 itemsize 37 location key (0 UNKNOWN.0 0) type XATTR transid 7 data_len 1 name_len 6 name: user.a data a item 3 key (450 EXTENT_DATA 0) itemoff 16020 itemsize 53 generation 9 type 1 (regular) extent data disk byte 303144960 nr 12288 extent data offset 0 nr 4096 ram 12288 extent compression 0 (none) item 4 key (450 EXTENT_DATA 4096) itemoff 15967 itemsize 53 generation 9 type 2 (prealloc) prealloc data disk byte 303144960 nr 12288 prealloc data offset 4096 nr 8192 item 5 key (450 EXTENT_DATA 8192) itemoff 15914 itemsize 53 generation 9 type 2 (prealloc) prealloc data disk byte 303144960 nr 12288 prealloc data offset 8192 nr 4096 ... So the real problem happened earlier: notice that items 4 (4k-12k) and 5 (8k-12k) overlap. Both are prealloc extents. Item 4 straddles i_size and item 5 starts at i_size. Here is the state of the filesystem tree at the time of the crash: >>> root = prog.crashed_thread().stack_trace()[2]["inode"].root >>> ret, nodes, slots = btrfs_search_slot(root, BtrfsKey(450, 0, 0)) >>> print_extent_buffer(nodes[0]) leaf 30425088 level 0 items 184 generation 9 owner 5 leaf 30425088 flags 0x100000000000000 fs uuid e5bd3946-400c-4223-8923-190ef1f18677 chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da ... item 179 key (450 INODE_ITEM 0) itemoff 4907 itemsize 160 generation 7 transid 7 size 4096 nbytes 12288 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 6 flags 0x10(PREALLOC) atime 1716417703.220000000 (2024-05-22 15:41:43) ctime 1716417703.220000000 (2024-05-22 15:41:43) mtime 1716417703.220000000 (2024-05-22 15:41:43) otime 1716417703.220000000 (2024-05-22 15:41:43) item 180 key (450 INODE_REF 256) itemoff 4894 itemsize 13 index 195 namelen 3 name: 193 item 181 key (450 XATTR_ITEM 1640047104) itemoff 4857 itemsize 37 location key (0 UNKNOWN.0 0) type XATTR transid 7 data_len 1 name_len 6 name: user.a data a item 182 key (450 EXTENT_DATA 0) itemoff 4804 itemsize 53 generation 9 type 1 (regular) extent data disk byte 303144960 nr 12288 extent data offset 0 nr 8192 ram 12288 extent compression 0 (none) item 183 key (450 EXTENT_DATA 8192) itemoff 4751 itemsize 53 generation 9 type 2 (prealloc) prealloc data disk byte 303144960 nr 12288 prealloc data offset 8192 nr 4096 Item 5 in the log tree corresponds to item 183 in the filesystem tree, but nothing matches item 4. Furthermore, item 183 is the last item in the leaf. btrfs_log_prealloc_extents() is responsible for logging prealloc extents beyond i_size. It first truncates any previously logged prealloc extents that start beyond i_size. Then, it walks the filesystem tree and copies the prealloc extent items to the log tree. If it hits the end of a leaf, then it calls btrfs_next_leaf(), which unlocks the tree and does another search. However, while the filesystem tree is unlocked, an ordered extent completion may modify the tree. In particular, it may insert an extent item that overlaps with an extent item that was already copied to the log tree. This may manifest in several ways depending on the exact scenario, including an EEXIST error that is silently translated to a full sync, overlapping items in the log tree, or this crash. This particular crash is triggered by the following sequence of events: - Initially, the file has i_size=4k, a regular extent from 0-4k, and a prealloc extent beyond i_size from 4k-12k. The prealloc extent item is the last item in its B-tree leaf. - The file is fsync'd, which copies its inode item and both extent items to the log tree. - An xattr is set on the file, which sets the BTRFS_INODE_COPY_EVERYTHING flag. - The range 4k-8k in the file is written using direct I/O. i_size is extended to 8k, but the ordered extent is still in flight. - The file is fsync'd. Since BTRFS_INODE_COPY_EVERYTHING is set, this calls copy_inode_items_to_log(), which calls btrfs_log_prealloc_extents(). - btrfs_log_prealloc_extents() finds the 4k-12k prealloc extent in the filesystem tree. Since it starts before i_size, it skips it. Since it is the last item in its B-tree leaf, it calls btrfs_next_leaf(). - btrfs_next_leaf() unlocks the path. - The ordered extent completion runs, which converts the 4k-8k part of the prealloc extent to written and inserts the remaining prealloc part from 8k-12k. - btrfs_next_leaf() does a search and finds the new prealloc extent 8k-12k. - btrfs_log_prealloc_extents() copies the 8k-12k prealloc extent into the log tree. Note that it overlaps with the 4k-12k prealloc extent that was copied to the log tree by the first fsync. - fsync calls btrfs_log_changed_extents(), which tries to log the 4k-8k extent that was written. - This tries to drop the range 4k-8k in the log tree, which requires adjusting the start of the 4k-12k prealloc extent in the log tree to 8k. - btrfs_set_item_key_safe() sees that there is already an extent starting at 8k in the log tree and calls BUG(). Fix this by detecting when we're about to insert an overlapping file extent item in the log tree and truncating the part that would overlap. CC: [email protected] # 6.1+ Reviewed-by: Filipe Manana <[email protected]> Signed-off-by: Omar Sandoval <[email protected]> Signed-off-by: David Sterba <[email protected]>
The kprobes and synth event generation test modules add events and lock (get a reference) those event file reference in module init function, and unlock and delete it in module exit function. This is because those are designed for playing as modules. If we make those modules as built-in, those events are left locked in the kernel, and never be removed. This causes kprobe event self-test failure as below. [ 97.349708] ------------[ cut here ]------------ [ 97.353453] WARNING: CPU: 3 PID: 1 at kernel/trace/trace_kprobe.c:2133 kprobe_trace_self_tests_init+0x3f1/0x480 [ 97.357106] Modules linked in: [ 97.358488] CPU: 3 PID: 1 Comm: swapper/0 Not tainted 6.9.0-g699646734ab5-dirty Rust-for-Linux#14 [ 97.361556] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 [ 97.363880] RIP: 0010:kprobe_trace_self_tests_init+0x3f1/0x480 [ 97.365538] Code: a8 24 08 82 e9 ae fd ff ff 90 0f 0b 90 48 c7 c7 e5 aa 0b 82 e9 ee fc ff ff 90 0f 0b 90 48 c7 c7 2d 61 06 82 e9 8e fd ff ff 90 <0f> 0b 90 48 c7 c7 33 0b 0c 82 89 c6 e8 6e 03 1f ff 41 ff c7 e9 90 [ 97.370429] RSP: 0000:ffffc90000013b50 EFLAGS: 00010286 [ 97.371852] RAX: 00000000fffffff0 RBX: ffff888005919c00 RCX: 0000000000000000 [ 97.373829] RDX: ffff888003f40000 RSI: ffffffff8236a598 RDI: ffff888003f40a68 [ 97.375715] RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000 [ 97.377675] R10: ffffffff811c9ae5 R11: ffffffff8120c4e0 R12: 0000000000000000 [ 97.379591] R13: 0000000000000001 R14: 0000000000000015 R15: 0000000000000000 [ 97.381536] FS: 0000000000000000(0000) GS:ffff88807dcc0000(0000) knlGS:0000000000000000 [ 97.383813] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 97.385449] CR2: 0000000000000000 CR3: 0000000002244000 CR4: 00000000000006b0 [ 97.387347] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 97.389277] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 97.391196] Call Trace: [ 97.391967] <TASK> [ 97.392647] ? __warn+0xcc/0x180 [ 97.393640] ? kprobe_trace_self_tests_init+0x3f1/0x480 [ 97.395181] ? report_bug+0xbd/0x150 [ 97.396234] ? handle_bug+0x3e/0x60 [ 97.397311] ? exc_invalid_op+0x1a/0x50 [ 97.398434] ? asm_exc_invalid_op+0x1a/0x20 [ 97.399652] ? trace_kprobe_is_busy+0x20/0x20 [ 97.400904] ? tracing_reset_all_online_cpus+0x15/0x90 [ 97.402304] ? kprobe_trace_self_tests_init+0x3f1/0x480 [ 97.403773] ? init_kprobe_trace+0x50/0x50 [ 97.404972] do_one_initcall+0x112/0x240 [ 97.406113] do_initcall_level+0x95/0xb0 [ 97.407286] ? kernel_init+0x1a/0x1a0 [ 97.408401] do_initcalls+0x3f/0x70 [ 97.409452] kernel_init_freeable+0x16f/0x1e0 [ 97.410662] ? rest_init+0x1f0/0x1f0 [ 97.411738] kernel_init+0x1a/0x1a0 [ 97.412788] ret_from_fork+0x39/0x50 [ 97.413817] ? rest_init+0x1f0/0x1f0 [ 97.414844] ret_from_fork_asm+0x11/0x20 [ 97.416285] </TASK> [ 97.417134] irq event stamp: 13437323 [ 97.418376] hardirqs last enabled at (13437337): [<ffffffff8110bc0c>] console_unlock+0x11c/0x150 [ 97.421285] hardirqs last disabled at (13437370): [<ffffffff8110bbf1>] console_unlock+0x101/0x150 [ 97.423838] softirqs last enabled at (13437366): [<ffffffff8108e17f>] handle_softirqs+0x23f/0x2a0 [ 97.426450] softirqs last disabled at (13437393): [<ffffffff8108e346>] __irq_exit_rcu+0x66/0xd0 [ 97.428850] ---[ end trace 0000000000000000 ]--- And also, since we can not cleanup dynamic_event file, ftracetest are failed too. To avoid these issues, build these tests only as modules. Link: https://lore.kernel.org/all/171811263754.85078.5877446624311852525.stgit@devnote2/ Fixes: 9fe41ef ("tracing: Add synth event generation test module") Fixes: 6483624 ("tracing: Add kprobe event command generation test module") Signed-off-by: Masami Hiramatsu (Google) <[email protected]> Reviewed-by: Steven Rostedt (Google) <[email protected]>
The code in ocfs2_dio_end_io_write() estimates number of necessary transaction credits using ocfs2_calc_extend_credits(). This however does not take into account that the IO could be arbitrarily large and can contain arbitrary number of extents. Extent tree manipulations do often extend the current transaction but not in all of the cases. For example if we have only single block extents in the tree, ocfs2_mark_extent_written() will end up calling ocfs2_replace_extent_rec() all the time and we will never extend the current transaction and eventually exhaust all the transaction credits if the IO contains many single block extents. Once that happens a WARN_ON(jbd2_handle_buffer_credits(handle) <= 0) is triggered in jbd2_journal_dirty_metadata() and subsequently OCFS2 aborts in response to this error. This was actually triggered by one of our customers on a heavily fragmented OCFS2 filesystem. To fix the issue make sure the transaction always has enough credits for one extent insert before each call of ocfs2_mark_extent_written(). Heming Zhao said: ------ PANIC: "Kernel panic - not syncing: OCFS2: (device dm-1): panic forced after error" PID: xxx TASK: xxxx CPU: 5 COMMAND: "SubmitThread-CA" #0 machine_kexec at ffffffff8c069932 #1 __crash_kexec at ffffffff8c1338fa #2 panic at ffffffff8c1d69b9 #3 ocfs2_handle_error at ffffffffc0c86c0c [ocfs2] #4 __ocfs2_abort at ffffffffc0c88387 [ocfs2] #5 ocfs2_journal_dirty at ffffffffc0c51e98 [ocfs2] #6 ocfs2_split_extent at ffffffffc0c27ea3 [ocfs2] #7 ocfs2_change_extent_flag at ffffffffc0c28053 [ocfs2] #8 ocfs2_mark_extent_written at ffffffffc0c28347 [ocfs2] #9 ocfs2_dio_end_io_write at ffffffffc0c2bef9 [ocfs2] #10 ocfs2_dio_end_io at ffffffffc0c2c0f5 [ocfs2] #11 dio_complete at ffffffff8c2b9fa7 #12 do_blockdev_direct_IO at ffffffff8c2bc09f #13 ocfs2_direct_IO at ffffffffc0c2b653 [ocfs2] #14 generic_file_direct_write at ffffffff8c1dcf14 #15 __generic_file_write_iter at ffffffff8c1dd07b #16 ocfs2_file_write_iter at ffffffffc0c49f1f [ocfs2] #17 aio_write at ffffffff8c2cc72e #18 kmem_cache_alloc at ffffffff8c248dde #19 do_io_submit at ffffffff8c2ccada #20 do_syscall_64 at ffffffff8c004984 #21 entry_SYSCALL_64_after_hwframe at ffffffff8c8000ba Link: https://lkml.kernel.org/r/[email protected] Link: https://lkml.kernel.org/r/[email protected] Fixes: c15471f ("ocfs2: fix sparse file & data ordering issue in direct io") Signed-off-by: Jan Kara <[email protected]> Reviewed-by: Joseph Qi <[email protected]> Reviewed-by: Heming Zhao <[email protected]> Cc: Mark Fasheh <[email protected]> Cc: Joel Becker <[email protected]> Cc: Junxiao Bi <[email protected]> Cc: Changwei Ge <[email protected]> Cc: Gang He <[email protected]> Cc: Jun Piao <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
A sysfs reader can race with a device reset or removal, attempting to read device state when the device is not actually present. eg: [exception RIP: qed_get_current_link+17] Rust-for-Linux#8 [ffffb9e4f2907c48] qede_get_link_ksettings at ffffffffc07a994a [qede] Rust-for-Linux#9 [ffffb9e4f2907cd8] __rh_call_get_link_ksettings at ffffffff992b01a3 Rust-for-Linux#10 [ffffb9e4f2907d38] __ethtool_get_link_ksettings at ffffffff992b04e4 Rust-for-Linux#11 [ffffb9e4f2907d90] duplex_show at ffffffff99260300 Rust-for-Linux#12 [ffffb9e4f2907e38] dev_attr_show at ffffffff9905a01c Rust-for-Linux#13 [ffffb9e4f2907e50] sysfs_kf_seq_show at ffffffff98e0145b Rust-for-Linux#14 [ffffb9e4f2907e68] seq_read at ffffffff98d902e3 Rust-for-Linux#15 [ffffb9e4f2907ec8] vfs_read at ffffffff98d657d1 Rust-for-Linux#16 [ffffb9e4f2907f00] ksys_read at ffffffff98d65c3f Rust-for-Linux#17 [ffffb9e4f2907f38] do_syscall_64 at ffffffff98a052fb crash> struct net_device.state ffff9a9d21336000 state = 5, state 5 is __LINK_STATE_START (0b1) and __LINK_STATE_NOCARRIER (0b100). The device is not present, note lack of __LINK_STATE_PRESENT (0b10). This is the same sort of panic as observed in commit 4224cfd ("net-sysfs: add check for netdevice being present to speed_show"). There are many other callers of __ethtool_get_link_ksettings() which don't have a device presence check. Move this check into ethtool to protect all callers. Fixes: d519e17 ("net: export device speed and duplex via sysfs") Fixes: 4224cfd ("net-sysfs: add check for netdevice being present to speed_show") Signed-off-by: Jamie Bainbridge <[email protected]> Link: https://patch.msgid.link/8bae218864beaa44ed01628140475b9bf641c5b0.1724393671.git.jamie.bainbridge@gmail.com Signed-off-by: Jakub Kicinski <[email protected]>
See #12
This ensures reproducible builds and no unintended updates even if a developer runs
cargo
on their own without one of the locking flags. We will explicitly manage them.It is likely that we will change how we manage the dependencies, but for the moment, it is good to have the semantics we will anyway want.