-
Notifications
You must be signed in to change notification settings - Fork 3k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Bugfix] Fix dsk rope diff #9859
Conversation
Thanks for your contribution! |
51a13c0
to
d3e48c8
Compare
Codecov ReportAttention: Patch coverage is
❌ Your patch status has failed because the patch coverage (0.00%) is below the target coverage (80.00%). You can increase the patch coverage or adjust the target coverage. Additional details and impacted files@@ Coverage Diff @@
## develop #9859 +/- ##
===========================================
- Coverage 51.77% 51.77% -0.01%
===========================================
Files 738 738
Lines 117094 117123 +29
===========================================
+ Hits 60629 60635 +6
- Misses 56465 56488 +23 ☔ View full report in Codecov by Sentry. |
update 0113 support head_dim=192,256 for append_attn c16 attention run refine code add softmax_scale support weight_only_int8 refine code support tp delete test_append_attn add splited fused_moe from ziyuan add deepseek-v3 class fix repe for deepseek-v3 fix wint8 precision and refine code fix wint4, big diff add e_score_correction_bias fix head_dim fix v3 verify [AutoParallel] open tensor_fusion for benchmark (PaddlePaddle#9749) * open tensor_fusion for benchmark fix loraga merge (PaddlePaddle#9765) * fix loraga merge * change sign Fix ernie ci auto trainer error (PaddlePaddle#9758) * [AutoParallel]:fix ernine auto_trainer error * [AutoParallel]:fix ernine auto_trainer error * [AutoParallel]:fix ernine auto_trainer error * [AutoParallel]:fix ernine auto_trainer error * [AutoParallel]:fix ernine auto_trainer error * [AutoParallel]:fix ernine auto_trainer error * [AutoParallel]:fix ernine auto_trainer error * [AutoParallel]:fix ernine auto_trainer error * [AutoParallel]:fix ernine auto_trainer error * [AutoParallel]:fix ernine auto_trainer error * [AutoParallel]:fix ernine auto_trainer error * [AutoParallel]:fix ernine auto_trainer error * [AutoParallel]:fix ernine auto_trainer error * Update run_pretrain_auto.py Update README.md (PaddlePaddle#9766) * Update README.md [BugFix] Fix matryoshka norm loss (PaddlePaddle#9774) * fix matryoshka norm [Distributed] support fuse optimizer (PaddlePaddle#9519) (PaddlePaddle#9777) Update register_sequence_parallel_allreduce_hooks (PaddlePaddle#9782) * fix sequence parallel * update register_sequence_parallel_allreduce_hooks * update fuse_sequence_parallel_allreduce Fix ce error (PaddlePaddle#9783) * [AutoParallel]:fix ci error * [AutoParallel]:fix ci error fix (PaddlePaddle#9779) [MoE] fix expert parallel (PaddlePaddle#9760) * fix moe uc fix dpo pp criterion (PaddlePaddle#9786) [Infer] Add pir_model path for server infer. (PaddlePaddle#9790) fix d2s fix v3 verify support qk_head_dim != v_head_dim support fp8 batch gemm on cutlass3.x upgrade cutlass version for block_wise fp8 gemm change cutlass commit to ckl117 group_wise branch support fp8 block gemm, but private cutlass commit, and TODO: update fp8 dual gemm api on cutlass3.x support auto tune fp8 block gemm code update cutlass to v3.7.0, todo: support block gemm based on v3.7.0 support block gemm on cutlass v3.7.0 commit code check code check check dynamic_quant ad block builder dir rename group_quant fix wint8 v_head_dim fix rope fix qwen2 mla use position_ids only remove control flow remove gpu concat fix norm weight dtype remove all_reduce in fused_moe part support fp8 check group_quant and fake fp8 check support block gemm [LLM] support flash device on static model (PaddlePaddle#9619) (PaddlePaddle#9787) * [LLM] support flash device on static model * [LLM] adapt pdc sdk [LLM Benchmark]update scripts (PaddlePaddle#9722) * add no_proxy & del paddlenlp_ops * update timeout for dpo * fix sequence_parallel * add timeout * add Total_Tokens_per_second_per_gpu * fix Tokens_per_second_per_gpu * update Total_Tokens_per_second_per_gpu mergekit gpu 1226 (PaddlePaddle#9702) * mergekit gpu 1226 * merge model gpu * merge gpu * add lora model * change valueerror * add lora * gpu test [LLM] merge code from fastdeploy (PaddlePaddle#9791) * [LLM] update llm server dockerfiles * merge code from fastdeploy [Inference] Support eagle for llama (PaddlePaddle#9812) [CI] Fix ci of small models (PaddlePaddle#9633) [Trainer] Wrap model when lora is ON and only do evaluation. (PaddlePaddle#9803) [README] Update README.md for documention (PaddlePaddle#9785) * Update README.md * Update README.md * Update README_en.md fix static run wint8 and fake-fp8, todo: support data type does not match support fp8, but ffn1 and moe in wint8 support ffn1 fp8 block gemm done ffn1 fp8 block gemm block gemm done block gemm support batch refine rope code compute position_ids use custom op fix split_param (PaddlePaddle#9817) [LLM] Update model convert and fix TP for deepseekv3 (PaddlePaddle#9797) * fix model convert and tp in MoEMLP * fix tp_action filter * update convert accoding to num_nextn_predict_layers * add deepseek-R1 fuse rope fix macro fix mixtral set_state_dict block_wise weight support fp8 per tensor network, no support scale Tensor for tensor gemm deepseek-v3 fp8 tensor gemm network, but precision fault add triton fp8 fused_moe kernel fix moe triton kernel add moe triton kernel fix fix fp8 block gemm precision moe triton fp8 network support moe triton and precision correct, but shared ffn1 ffn2 incorrect fp8 block network, no check shared ffn1-ffn2 in v2-lite delete wint8 in fake delete some useless code and verify per tensor net with in qkv outlinear ffn1 ffn2, but triton moe don't match api fp8 block quant when load model, and code check fix tokenizer and qwen [AutoParallel] add sharding tensor_fusion save load switch (PaddlePaddle#9810) * support tensor_fusion save load * apply suggestions from code review 修复benchmark多机任务异常退出的处理 (PaddlePaddle#9651) * 修复benchmark多机任务异常退出的处理 * fix bug * update Fix LLAMA arg parsing bug in pp (PaddlePaddle#9806) [Readme] Update mixtral.md (PaddlePaddle#9829) [XPU] Support empty_cache on XPUs (PaddlePaddle#9789) * [XPU] Support empty_cache on XPUs * warn if current device doesn't support [Inference] Fix multibatch inference (PaddlePaddle#9831) * fix batch infra * fix deepseekv2 infra Fix position_ids for infra (PaddlePaddle#9841) fix moe diff due to e_score_correction_bias fix fast tokenizer [LLM] Add pipeline and flashmask for Qwen2Moe and Deepseek (PaddlePaddle#9827) * add modleing_pp * add modleing_pp for qwen2moe * add flashmask and pp for Qwen2MoE and Deepseek * remove * fix fast_tokenizer save * update for topk_weight of noaux_tc * fix for flashmask * add use_expert_parallel for pretrain * fix tokenizer test [Mergekit]update & add LoRA merge (PaddlePaddle#9811) * add * fix bug * fix * add * add lora merge * add * add * add * add * add * add [Unified Checkpoint] Fix expert parallel (PaddlePaddle#9821) * fix expert parallel * fix split_param for expert parallel * add filter_sync_parameters fix import [Inference] Flask server compatible with OpenAI api. (PaddlePaddle#9828) * flask server compatible with OpenAI api. * fix max_length to max_tokens. * fix with think model. [LLM] fix checkpoint save for non flash mode (PaddlePaddle#9830) support mla for speculate [DSK] support deepseek-v3/r1 (mha/fp16/bf16/wint8/wint4) (PaddlePaddle#9769) * support deepseek-v3 * support head_dim=192,256 for append_attn c16 * update 0113 * attention run * refine code * add softmax_scale * support weight_only_int8 * refine code * support tp * delete test_append_attn * add splited fused_moe from ziyuan * fix repe for deepseek-v3 * add deepseek-v3 class * fix wint8 precision and refine code * fix wint4, big diff * add e_score_correction_bias * fix head_dim * fix v3 verify * fix d2s * fix v3 verify * support qk_head_dim != v_head_dim * fix wint8 v_head_dim * fix rope * fix qwen2 * mla use position_ids only * remove control flow * remove gpu concat * fix norm weight dtype * remove all_reduce in fused_moe * fix static run * refine rope code * compute position_ids use custom op * fuse rope * fix macro * fix mixtral * support mla for speculate * fix tokenizer and qwen * fix moe diff due to e_score_correction_bias * fix fast tokenizer * fix import --------- Co-authored-by: lizhenyun01 <[email protected]> Co-authored-by: lizhenyun <[email protected]> Solve the compatibility problem of type annotation Python version (PaddlePaddle#9853) mix fp8 and wint8 save extra special tokens (PaddlePaddle#9837) [Bugfix] Fix dsk rope diff (PaddlePaddle#9859) * fix dsk diff * fix * update merge develop to check fp8 moe-wint8 fix deepseek v3 fp8 precision fix deepseek weight quant [Optimization] Support lower memory cards. (PaddlePaddle#9804) * support lower memory cards. * add doc for v100 16G such devices. * remove debug info. * add pre divided factor to overcome overfit problem for fp16 attention. Support XPU for auto-paralllel LLaMa (PaddlePaddle#9796) * Support XPU for auto-paralllel LLaMa * Update * Update * Update * Update * Fix CI errors * Update [XPU] Add xpu fused op for deepseek (PaddlePaddle#9854) [Inference] Update deepseek (PaddlePaddle#9864) * fix * fix infra [PreTrain] Support deepseek mfu for pretraining and fix tflops for pretrain pipe model (PaddlePaddle#9855) * git flops with pp model. * Support hareware tflops for deepseek. [Inference]Support mtp with deepseek-v3 (PaddlePaddle#9856) * support mtp with deepseek_v3 both in static and dygraph mode * fix speculate tokenizer in unittest * delete useless code check code
Before submitting
tests
folder. If there are codecov issues, please add tests cases first.PR types
Bug fixes
PR changes
Others
Description