Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1,236 changes: 1,236 additions & 0 deletions tester/api_config/3_paddle_only/paddle_only.txt

Large diffs are not rendered by default.

8,887 changes: 4,525 additions & 4,362 deletions tester/api_config/5_accuracy/accuracy_7.txt

Large diffs are not rendered by default.

11 changes: 0 additions & 11 deletions tester/api_config/5_accuracy/accuracy_cpu_error.txt
Original file line number Diff line number Diff line change
Expand Up @@ -1430,17 +1430,6 @@ paddle.nn.functional.grid_sample(Tensor([1, 4, 400, 300],"float32"), Tensor([1,
paddle.nn.functional.grid_sample(Tensor([1, 4, 400, 300],"float32"), Tensor([1, 434, 346, 2],"float32"), mode="nearest", padding_mode="zeros", align_corners=False, )
paddle.nn.functional.grid_sample(Tensor([1, 4, 430, 340],"float32"), Tensor([1, 477, 401, 2],"float32"), mode="nearest", padding_mode="zeros", align_corners=False, )
paddle.nn.functional.grid_sample(Tensor([1, 4, 434, 346],"float32"), Tensor([1, 466, 386, 2],"float32"), mode="nearest", padding_mode="zeros", align_corners=False, )
paddle.nn.functional.interpolate(Tensor([1, 2, 128, 128],"float16"), list[512,512,], mode="bilinear", align_corners=False, data_format="NCHW", )
paddle.nn.functional.interpolate(Tensor([2, 2, 128, 128],"float16"), list[512,512,], mode="bilinear", align_corners=False, data_format="NCHW", )
paddle.nn.functional.interpolate(Tensor([4, 128, 32, 32],"float16"), list[128,128,], mode="bilinear", align_corners=False, )
paddle.nn.functional.interpolate(Tensor([4, 128, 4, 4],"float16"), list[16,32,], mode="bilinear", align_corners=False, )
paddle.nn.functional.interpolate(Tensor([4, 19, 128, 256],"float16"), list[512,1024,], mode="bilinear", align_corners=False, data_format="NCHW", )
paddle.nn.functional.interpolate(Tensor([4, 19, 256, 256],"float16"), list[1024,1024,], mode="bilinear", align_corners=False, )
paddle.nn.functional.interpolate(Tensor([4, 19, 256, 256],"float16"), size=list[1024,1024,], mode="bilinear", align_corners=False, )
paddle.nn.functional.interpolate(Tensor([4, 2, 128, 128],"float16"), list[512,512,], mode="bilinear", align_corners=False, data_format="NCHW", )
paddle.nn.functional.interpolate(Tensor([4, 256, 16, 16],"float16"), size=list[64,64,], mode="bilinear", )
paddle.nn.functional.interpolate(Tensor([4, 256, 64, 64],"float16"), size=list[256,256,], mode="bilinear", align_corners=False, )
paddle.nn.functional.interpolate(Tensor([512, 40, 4, 3],"float16"), size=None, scale_factor=8, mode="nearest", align_corners=False, align_mode=0, data_format="NCHW", name=None, )
paddle.nn.functional.rnnt_loss(Tensor([3, 4, 3, 3],"float32"), Tensor([3, 2],"int32"), Tensor([3],"int32"), Tensor([3],"int32"), blank=0, fastemit_lambda=0.0, reduction="none", name=None, )
paddle.nn.functional.rnnt_loss(Tensor([3, 4, 3, 3],"float32"), Tensor([3, 2],"int32"), Tensor([3],"int32"), Tensor([3],"int32"), blank=0, reduction="mean", fastemit_lambda=0.0, )
paddle.nn.functional.rnnt_loss(Tensor([3, 4, 3, 3],"float32"), Tensor([3, 2],"int32"), Tensor([3],"int32"), Tensor([3],"int32"), blank=0, reduction="sum", fastemit_lambda=0.0, )
Expand Down
Loading