-
Notifications
You must be signed in to change notification settings - Fork 2.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add sharding for speechlm and vlm (#11876)
* Add sharding for speechlm and vlm Signed-off-by: Boxiang Wang <[email protected]> * Add ci test for VLM Signed-off-by: Boxiang Wang <[email protected]> * Apply isort and black reformatting Signed-off-by: BoxiangW <[email protected]> --------- Signed-off-by: Boxiang Wang <[email protected]> Signed-off-by: BoxiangW <[email protected]> Co-authored-by: BoxiangW <[email protected]>
- Loading branch information
Showing
5 changed files
with
198 additions
and
15 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,134 @@ | ||
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from importlib.metadata import version | ||
|
||
import fiddle as fdl | ||
import torch | ||
from lightning.pytorch.loggers import WandbLogger | ||
from packaging.version import Version as PkgVersion | ||
|
||
from nemo import lightning as nl | ||
from nemo.collections import llm, vlm | ||
|
||
DATA_PATH = "/home/TestData/vlm/rdr-items" | ||
|
||
|
||
def get_torch_version_str(): | ||
import torch | ||
|
||
if hasattr(torch, '__version__'): | ||
return str(torch.__version__) | ||
else: | ||
return version("torch") | ||
|
||
|
||
def mk_hf_vlm_dataset(processor, mbs, gbs): | ||
skipped_tokens = vlm.HFAutoModelForImageTextToText.extract_skipped_token_ids(processor) | ||
|
||
def collate_fn(examples, processor): | ||
def fmt(sample): | ||
instruction = "Describe accurately the given image." | ||
conversation = [ | ||
{ | ||
"role": "user", | ||
"content": [{"type": "text", "text": instruction}, {"type": "image", "image": sample["image"]}], | ||
}, | ||
{"role": "assistant", "content": [{"type": "text", "text": sample["text"]}]}, | ||
] | ||
return {"conversation": conversation, "images": [sample['image']]} | ||
|
||
text = [] | ||
images = [] | ||
for example in map(fmt, examples): | ||
text.append( | ||
processor.apply_chat_template( | ||
example["conversation"], | ||
tokenize=False, | ||
add_generation_prompt=False, | ||
) | ||
) | ||
images += example['images'] | ||
|
||
# Tokenize the text and process the images | ||
batch = processor( | ||
text=text, | ||
images=images, | ||
padding=True, | ||
return_tensors="pt", | ||
) | ||
|
||
batch["pixel_values"] = batch["pixel_values"].to(torch.bfloat16) | ||
|
||
labels = batch["input_ids"].clone() | ||
labels[torch.isin(labels, skipped_tokens)] = -100 | ||
batch["labels"] = labels | ||
return batch | ||
|
||
return vlm.HFDatasetDataModule( | ||
DATA_PATH, | ||
split="train[:10]", | ||
micro_batch_size=mbs, | ||
global_batch_size=gbs, | ||
collate_fn=lambda x: collate_fn(x, processor=processor), | ||
) | ||
|
||
|
||
if __name__ == '__main__': | ||
if PkgVersion(get_torch_version_str()) >= PkgVersion("2.4"): | ||
import argparse | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--model', default='Qwen/Qwen2-VL-2B-Instruct') | ||
parser.add_argument('--devices', default=2) | ||
parser.add_argument('--mbs', default=1) | ||
parser.add_argument('--gbs', default=1) | ||
parser.add_argument('--accelerator', default='gpu', choices=['gpu']) | ||
parser.add_argument('--max-steps', type=int, default=100) | ||
parser.add_argument('--wandb-project', type=str, default=None) | ||
parser.add_argument('--disable-ckpt', action='store_false') | ||
parser.add_argument('--use-4bit', help="Load model in 4bit", action="store_true") | ||
args = parser.parse_args() | ||
|
||
wandb = None | ||
if args.wandb_project is not None: | ||
model = '_'.join(args.model.split('/')[-2:]) | ||
wandb = WandbLogger( | ||
project=args.wandb_project, | ||
name=f'{model}_dev{args.devices}_strat_fsdp2', | ||
) | ||
grad_clip = None | ||
use_dist_samp = False | ||
processor = vlm.HFAutoModelForImageTextToText.configure_processor(args.model) | ||
|
||
llm.api.finetune( | ||
model=vlm.HFAutoModelForImageTextToText(args.model, load_in_4bit=args.use_4bit), | ||
data=mk_hf_vlm_dataset(processor, args.mbs, args.gbs), | ||
trainer=nl.Trainer( | ||
devices=args.devices, | ||
max_steps=args.max_steps, | ||
accelerator=args.accelerator, | ||
strategy=nl.FSDP2Strategy(data_parallel_size=2, tensor_parallel_size=1), | ||
log_every_n_steps=1, | ||
limit_val_batches=0.0, | ||
num_sanity_val_steps=0, | ||
accumulate_grad_batches=10, | ||
gradient_clip_val=grad_clip, | ||
use_distributed_sampler=use_dist_samp, | ||
logger=wandb, | ||
enable_checkpointing=args.disable_ckpt, | ||
), | ||
optim=fdl.build(llm.adam.pytorch_adam_with_flat_lr(lr=1e-5)), | ||
log=None, | ||
) |